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The vergence treatment of geometric optics provides
both conceptual and algebraic advantages over the tradi-
tional object distance —image distance —focal length for-
malism. These advantages are particularly useful for the
life science student. In this paper vergence is defined in
terms of the curvature of the wave fronts, and some
examples are given to illustrate the advantages of this
approach.

I. INTRODUCTION

The teaching of physics to life science students has
generated considerable interest in the past three or four
years. However as manifested in texts which have ap-
peared,''? geometric optics continues to be treated in the
traditional manner. The basic equation used is the thin
lens equation connecting the image distance v, the object
distance u, and the posterior focal length f,. If the posi-
tive direction is taken to be the direction in which the
light is traveling, and all distances are measured from the
lens to the position being considered, then the equation
may be written as

1/v=1/f+1/u. (1)

For many life science students, the solution of Eq. (1)
is a formidable task involving common denominators and
the manipulation of fractions. Even for those who have
no difficulty with the algebra, the task is still tedious. In
addition, conceptual difficulties pop up in the cases of di-
verging light leaving a lens (virtual images), and converg-
ing light incident on a lens (virtual objects). The latter
situation is avoided even by some calculus level texts for
physics majors.® However, these two cases are everyday
occurrences in the correction of myopia (nearsightedness)
and hyperopia (farsightedness). The concept of vergence,
used by optometrists and ophthalmologists in their treat-
ment of geometric optics, offers both algebraic and con-
ceptual advantages over the traditional physws approach
[Eq (1)] The purpose of this paper is to make the
physics community aware of these advantages.

Vergence is usually defined in terms of rays,*~® but it
can also be defined in terms of the curvature of the
wavefronts.® I will use the wave-front approach since it is
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Fig. 1. Light waves diverging from a point source at A, passing through
a convex thin lens at B, and converging to form a real image at C.

clearer and easier to grasp than the ray approach. The
remainder of the paper is divided into three sections. Sec-
tion II deals with the combined wave front-vergence ap-
proach to thin lenses in air (with the assumption that
n =1, where n is the index of refraction of the air). Sec-
tion HI deals with the generalization of the vergence ap-
proach to light propagation in media other than air (i.e.,
n * 1). Section IV concludes the article.

II. VERGENCE—THIN LENSES IN AIR (n = 1)

Let us first consider how a lens works, using some in-
tuitive ideas about waves. An ideal point source will emit
spherical diverging light waves. Given the usual first-
order approximations (i.e., aberrations and diffraction
neglected), the waves leaving a thin lens are also spheri-
cal but the emerging wave front has a different curvature
than the incident wave front. In the case shown in Fig. 1,
the converging waves form a point image conjugate to the
point object.

For light in air (n = 1), vergence at a given position is
defined as the curvature of the wave front at that position.
Vergence is a measure of the degree of convergence or
divergence of the light at the given position. In the case
being considered, the wave fronts are spherical, and the
curvature of a sphere is equal to the reciprocal of the
radius of the sphere.!® The unit of vergence in universal
use is the diopter (abbreviated D) which is dimensionally
equal to the reciprocal of a meter. I will take diverging
light as having negative vergence, and converging light as
having positive vergence. Historically, concepts similar to
vergence date back to the British astronomer J. F. W.
Herschel in 1827, while the diopter was introduced by the
French ophthalmologist Ferdinand Monoyer in 1872.11

From Fig. 1, one expects that vergence is large (in
magnitude) near a point source or point image (the wave
fronts are highly curved), and small far from a point
source or point image (the wave fronts are fairly flat). At
0.25 m from the point source, the vergence V of the di-
verging light is —4 D; at 0.5 m, ¥V = —2 D (not as di-
vergent); at Il m, ¥V = —1D;at2m, ¥V =—0.5D (even
closer to becoming plane). Converging light of vergence
+4 D at a position means the radius of the wave front at
that position is 0.25 m. If allowed to continue on, the
converging light will form a point image 0.25 m away.
The vergence of the converging light 5 cm from the im-
age position is (100 cm/m)(5 cm)™' = + 20 D.

In terms of the vergence U of the light incident on a
lens and the vergence V of the light as it leaves the lens,
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the thin lens equation is

V=P+U, (2)

where P is the dioptric power of the lens. The dioptric
power is a measure of the ability of the lens to converge
or diverge light. If light of vergence U = — 2 D is inci-
dent and light of vergence V = — 5 D is leaving, then
P = — 3 D. Because of the simplicity of Eq. (2) and the
resulting formalism, ophthalmic lenses are marked in terms
of dioptric power.

As an example of an imaging problem, let us imagine
that an illuminated Van Gogh painting is located 25 cm
in front of a +7-D lens. Diverging light from the painting
reaches the lens with a vergence U = —100/25 = —4 D.
From Eq. (2), V =7 + (—4) = +3 D. The light leaving
the lens is converging, and the wave front has a radius of
v =0.33 m = 33.3 cm. If uninterrupted, this light will
form a real image 33.3 ¢m behind the lens.

From the above example, it is clear that Eq. (2) is
algebraically much easier to work with than Eq. (1). The
operations required consist only of divisions, and an addi-
tion or subtraction, whereas Eq. (1) is usually solved with
fractions. Furthermore, Eq. (2) has the conceptual advan-
tage of describing the process in terms of what the light is
actually doing at the lens as opposed to Eq. (1), which
describes the process in terms of some distant object or
image. Treated in this manner, a converging wave front
incident on a lens (a virtual object) is just as easy to un-
derstand as a diverging wave front incident on a lens (a
real object). Similarly, a diverging wave front leaving a
lens (a virtual image) is just as easy to understand as a
converging wave front leaving a lens (a real image).

It is obvious that the object distance u is the radius of
curvature of the incident wave front, and the image dis-
tance v is the radius of curvature of the outgoing wave
front. With the sign conventions mentioned above,

u=1/U and v=1/V. (3)

For plane waves incident on a lens, U = 0 and, from
Eq. (2), V =P. The image distance in this case is de-
fined to be the posterior focal length f,, and it follows
from Eq. (3) that

f=1/P. )

The posterior focal length of the above +7-D lens is
fe = (100 cm/m) (7 D)™ = +14.3 cm. For a —3-D lens,
fz = '—33.3 cm.

For plane waves leaving a lens, V =0 and, from Eq.
(2), U = —P. The object distance in this case is defined
to be the anterior focal length f, and it follows that

fi=-1/P. (5)

For the +7- and —3-D lenses, f; = —14.3 and +33.3
cm, respectively.

When two thin lenses (dioptric power Py and P,, re-
spectively) are placed in contact with each other, then the
light leaving the first lens is immediately incident on the
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Fig. 2. Diverging wave fronts
moving from a concave (minus)
lens at B toward the convex 4T
(plus) lens at C. The center of Al
curvature of each of the wave

fronts is at A.

second lens. Therefore, V, =U,, where V, is the ver-
gence of the light leaving the first lens and U, is the ver-
gence of the light incident on the second lens. It is then
easy to show that the total dioptric power P of the two
lens system is

P=P1+P2. (6)

When the two thin lenses have an air gap between
them, the situation is different. Figure 2 shows a diverg-
ing (minus) lens B separated by a certain distance from a
converging (plus) lens C. Plane waves are incident on
lens B, and the waves leaving lens B are diverging and
have their center of curvature at point A. As the waves
move from lens B toward lens C, they become flatter
(less curved) and hence the vergence of the light incident
on lens C is less than the vergence of the light leaving
lens B. As an example, suppose lens B has dioptric
power —11.6 D, and the distance between B and C is
1.38 cm. Point A (the center of curvature of the wave
fronts leaving lens B) is located a distance v = 100/
(— 11.6) = —8.62 cm from lens B. Lens C is a distance
of 10.00 cm (8.62 + 1.38 cm) from point A, or the radius of
curvature of the wave front incident on lens C (the object
distance) is ¥ = —10.00 cm. The vergence of the light
incident on lens C is then U = 100/(— 10) = — 10.00 D.
Note that for converging light leaving a lens the vergence
increases as the waves move away from the lens. These
are the standard ‘‘lens effectivity’’ results.

The above example can be very nicely applied to ex-
plain the differences in dioptric power between a spectacle
lens corrections and a contact lens correction. In Fig. 2,
lens C could represent the cornea of a myopic eye, and
lens B is then the spectacle lens correction. The vergence
of the light incident on the cornea is —10.00 D when the
spectacle lens is a —11.6-D lens worn 1.39 c¢m in front of
the cornea. Hence, a contact lens correction for the same
eye would have to have a dioptric power of —10.00 D.

III. VERGENCE—MEDIA OTHER THAN »n =1

Let us first consider a flat interface between media
whose indices of refraction are n, and n,. If plane waves in
n, are incident on the interface, then the waves leaving
the interface in n, will also be plane waves. The interface
neither converges nor diverges the waves, although it will
deviate the direction of travel according to Snell’s law.
The dioptric power of the interface is zero.

However, when converging or diverging waves are in-
cident on the interface, then the curvature of the wave
front does change as the light passes through the inter-
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face, which results in the well-known apparent depth ef-
fects. In order that the formalism of Eq. (2) be able to
handle this situation, the definition of vergence is
generalized: The vergence of light at a given position in a
medium of index of refraction n is defined to be n times
the curvature of the wave front at that position. Histori-
cally, such a generalization was introduced by the
Swedish ophthalmologist Alvar Gullstrand (1862-1930)
under the name ‘‘reduced vergence.”’ At an interface, the
radius of curvature of the incident wave front is identified
as the object distance u, and the radius of curvature of the
emerging wave front is identified as the image distance
v. Therefore

u=n1/U (7)
and

v=n2/V, (8)

where U is the vergence of the incident light and V'is the
vergence of the emerging light. _

In general, light incident on a spherical interface be-
tween media n; and n, will be converged or diverged by
the interface. The curvature of the outgoing wave front
can be related to the curvature of the incident wave front
and the curvature of the interface by the use of the sagit-
tal approximation.!%!3 The resulting equation in terms of
the radius of curvature of the outgoing wave front, v, the
radius of curvature of the incident wave front, u, and the
radius of curvature of the interface, R, is

ny/v =y —ny)/R +ny/u. 9)

The sign convention is the same as in Sec. L.

Using Egs. (7) and (8) and comparing Eq. (9) to Eq.
(2), one sees that Eq. (9) has the same form as Eq. (2)
and that the dioptric power P of the interface is

P=(n, -ny)/R. (10)

As an example, consider the light diffusely reflected by
the iris of the human eye and traveling back through the
aqueous humor and the cornea out into air. The iris is lo-
cated approximately 3.6 mm behind the cornea. Assume
that the cornea and the aqueous humor both have an in-
dex of 1.336. (The index of the cornea is actually closer
to 1.376.) A typical radius of curvature of the cornea is
7.7 mm. From Eq. (10), the dioptric power of the cornea
P = (1.000 — 1.336)(1000 mm/m)(—7.7 mm)™' = +43.6
D. From Eq. (9), U = —1336/3.6 = —-371.1 D. From
Eq. 2), V = +43.6 D + (—371.1 D) = —327.5 D. The
outgoing light is diverging and in air. From Eq. (10), the
radius of curvature of the outgoing wave front (the image
distance) is v = 1000/(— 327.5) = —3.05 mm. In gener-
al, for a single spherical refracting interface, the magnifi-
cation m is equal to U/V, or m = —371.1/(=327.5)
= +1.13. Consequently, whenever you look at the beau-
tiful brown eyes of either a male or female, you are seeing
a virtual image that is slightly closer and slightly larger
than the actual iris. (On a ray diagram, remember that the
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nodal ray goes through the center of curvature of the in-
terface as Snell’s law will easily show.)

If the light incident on the interface consists of plane
waves (U = 0), then f, =v and from Egs. (2) and (8)

fr=ny/P. (11)

Similarly,

f1=—7l1/P. (12)

A simple spherical lens consists of two interfaces sepa-
rated by a certain thickness of glass or plastic. If the lens
is considered thin, then the thickness is neglected and the
vergence of the light leaving the first interface is equal to
the vergence of the light incident on the second interface.
The dioptric power of the thin lens is then just the sum of
the dioptric powers of the two interfaces. Consider a glass
(index 1.50) lens in air with the dioptric power of one
side being +10 D (a convex side) and the dioptric power
of the other side being —6 D (a concave side). The diop-
tric power of the lens is then +4 D, and the lens has a
posterior focal length of 25 cm [Eq. (4)]. If this lens is
now placed under water (index 1.33), the dioptric power
will be reduced by a factor of 0.17/0.50 = 0.34 |from
Eq. (10)]. The dioptric power of the lens in the water is
then +1.36 D, and from Eq. (11) the posterior focal
length f, = 133/1.36 = +97.8 cm.

IV. CONCLUSION

The vergence approach reduces the algebra of geomet-
ric optics to the very basic operations of multiplication,
division, addition, and subtraction. No common de-
nominators and no manipulation of fractions are used, but
even more important, the vergence approach provides a
method of thinking in terms of what the light is doing at
each position. The wave-front definition of vergence pro-
vides the student with a means of conceptualizing the
processes, and it also crystallizes the meaning of many of
the terms and phrases used in geometric optics. For
example: ‘‘appears to be diverging from x’’° means the
center of curvature of the actual diverging wave is at x;
‘“‘the far point of the hyperope’s eye is virtual and behind
the eye at y’’ means that in order to have a sharp image
on the retina of the hyperope the incident light must be
converging, and the center of curvature of the actual inci-
dent wave front must be at y. The wave-front approach to
vergence provides a clear representation of the fact that
the vergence is different at each position as the light
propagates through a uniform medium. This is important
in understanding and computing the difference between
spectacle lens power and a contact lens power.

The above-mentioned advantages are particularly useful
for life science students. My observation, based on work-
ing with optometry students, is that the typical student
exposed first to the vergence approach (complete with ray
diagrams) understands the traditional approach as a by-
product. On the other hand, the typical student exposed
first to the traditional approach has a much harder time
learning to think in terms of vergence. I think that
physics courses designed for the life science student
should treat geometric optics in terms of vergences.
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The combined wave-front-vergence approach has one
other advantage that has not been discussed in this paper.
The student becomes familiar with the idea of light as a
wave, and the concepts of interference and diffraction fall
into place easier. Similarly, the student is better prepared
for an introduction to optical transfer functions, which are
now an integral part of courses that deal with information
processing by the visual system.

ACKNOWLEDGMENTS

I would like to thank Dr. Vince King, Dr. Kent Hig-
gins, and Dr. Michael Cohen for reading and discussing
the original manuscript.

!D. E. Tilley and W. Thumm, College Physics, A Text With Applica-
tions To The Life Sciences (Cummins, Menlo Park, CA, 1971), pp.
427-436.

*D. M. Bums and S. G. G. MacDonald, Physics for Biology and Pre-
Medical Students (Addison-Wesley, Reading, MA, 1970), pp. 270~

275.

3D. Halliday and R. Resnick, Physics For Students of Science and En-
gineering (Wiley, New York, 1966), pp. 1045-1062.

iG. A. Fry, Geometric Optics (Chilton, Philadelphia, PA, 1969), p. 5.

5M. L. Rubin, Optics for Clinicians (Triad, Gainsville, FL, 1974), pp.
3-5.

SD. Goldstein, Optics for Optometrists (Pennsylvania College of Op-
tometry, Philadelphia, PA, 1973), pp. 64-65.

’J. R. Meyer-Arendt, Introduction To Classical and Modern Optics
(Prentice-Hall, Englewood Cliffs, NJ, 1972), p. 37.

8]. 1. Pascal, Studies in Visual Optics (Mosby, St. Louis, MO, 1952),
pp. 140-143.

9F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-
Hill, New York, 1957), pp. 38-39.

LOR. E. Johnson and F. L. Kiokemeister, Calculus with Analytic
Geomerry (Allyn and Bacon, Boston, MA, 1962), p. 431.

YEmsley and Swains’'s Ophthalmic Lenses, edited by A. G. Bennett
(Hutton, London, 1965), Vol. 1, pp. 29-50.

12R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lec-
tures on Physics (Addison-Wesley, Reading, MA, 1963), Vol. 1,
Chap. 27, pp. 1-3.

13F, G. Smith and J. H. Thomson, Optics (Wiley, New York, 1973),
pp. 104-105.

THE PREFIX MILLI

Millikan a standard of achievement equal to 1073 kan
Millipicture  a picture worth one word

Millihelen
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beauty sufficient to launch one ship
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