Dealing with small variations

 Math Methods, D. Craig2007-01-26

Section 3.2: Cosmic dust

The example in this section shows a technique using the first order term of the Taylor series to make a numerical estimate.

I will go through the solution with comments. This technique for dealing with small variations is very useful for quick estimates, and also shows some important considerations for numerical calculations.

3.2 a:

$5 \times 10^{7} \mathrm{~kg} / \mathrm{a}$ of meteoric dust falls on Earth. What is the volume per year (a for annum in the units) ? For average meteoric material $\rho=2.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. So

$$
\delta V=\frac{m}{\rho}=2 \times 10^{4} \mathrm{~m}^{3}
$$

We call it δV because this will be change in Earth's volume per year.

The relation between radius and volume $\mathrm{V}=$ $(4 \pi / 3) r^{3}$ can be written:

$$
r=\left(\frac{3 V}{4 \pi}\right)^{1 / 3}
$$

So the change in radius is:

$$
\delta r=\left[\frac{3(\mathrm{~V}+\delta \mathrm{V})}{4 \pi}\right]^{1 / 3}-\left(\frac{3 \mathrm{~V}}{4 \pi}\right)^{1 / 3}
$$

Now we say "Ha! We're done!" Reach for the calculator...

3.2 Problem b

$$
\begin{aligned}
V & =1.437 \times 10^{21} \mathrm{~m}^{3} \text { is the volume of Earth. } \\
V+\delta V & =1.436755040 \times 10^{21} \mathrm{~m}^{3}+2 \times 10^{4} \mathrm{~m}^{3} \\
& =1.436755040 \times 10^{21} \mathrm{~m}^{3} \text { Un oh } \ldots
\end{aligned}
$$

To something like 17 digits, both terms in the expression for δ r are going to be the same. So your calculator will say $\delta \mathrm{r}=0$.

You may get away with the right answer if your calculator has an algebra system or a manydigit mode, such as a TI89/92, or if you use a computer algebra system such as Maple or Mathematica. But that is swatting a fly with a sledgehammer.

3.2 Problem c

Look back at (3.18):

$$
f(x+h)-f(x) \approx h \frac{d f}{d x}(x)
$$

Just identify $h \rightarrow \delta x$ and $f(x+h)-f(x) \rightarrow \delta f$. Then it's obvious:

$$
\delta f \approx \frac{d f}{d x} \delta x
$$

The text has a partial derivative, it's same as the derivative for this one-dimensional case. (May need to check general case.)

3.2 Problem d Getting the derivative in the

 right form is nontrivial. Write r like this:$$
r(V)=\left(\frac{3}{4 \pi}\right)^{1 / 3} \cdot V^{1 / 3}
$$

to get the constant out of the way. Then take the derivative:

$$
\begin{aligned}
\frac{\operatorname{dr}(\mathrm{V})}{\mathrm{dV}} & =\left(\frac{3}{4 \pi}\right)^{1 / 3} \cdot \frac{1}{3} \mathrm{~V}^{-2 / 3} \\
& =\frac{1}{3}\left(\frac{3}{4 \pi}\right)^{1 / 3} \cdot \mathrm{~V}^{\left(\frac{1}{3}-1\right)} \\
& =\frac{1}{3}\left[\left(\frac{3}{4 \pi}\right)^{1 / 3} \mathrm{~V}^{1 / 3}\right] \mathrm{V}^{-1}
\end{aligned}
$$

The thing in brackets is r again, so:

$$
=\frac{1}{3} \frac{\mathrm{r}}{\mathrm{~V}}
$$

So we arrive at the result:

$$
\delta r=\frac{1}{3} r \frac{\delta V}{V}
$$

and plugging in the values we see that the Earth grows 1 angstrom per year from meteorites.

