Insight from a series: multilayer reflection

and Homework assignment 2

Math Methods, D. Craig

2007-01-29

We have one stack of layers on the left with reflection \& transmission coefficients R_{L}, T_{L} and a stack on the right with R_{R}, T_{R} See fig 3.4

What will be T, R for the combined stacks? You might think

$$
\mathrm{T} \stackrel{?}{=} \mathrm{T}_{\mathrm{L}} \mathrm{~T}_{\mathrm{R}} .
$$

But this would be wrong because there are right and left-going waves of relative strength A and B between the stacks that lead to reverberation terms.

3.4 Problem a

Working out the relation between all these (see figure and think about reflections):

$$
\begin{aligned}
A & =T_{L}+B R_{L} \\
B & =A R_{R} \\
T & =A T_{R} \\
R & =R_{L}+B T_{L}
\end{aligned}
$$

The first two can be solved for A, B, then substituted into the last two to solve the system.

3.4 problem b

$$
\begin{aligned}
A & =\mathrm{T}_{\mathrm{L}}+B R_{\mathrm{L}} \\
A & =\mathrm{T}_{\mathrm{L}}+A R_{\mathrm{R}} R_{\mathrm{L}} \\
A\left(1-R_{R} R_{L}\right) & =\mathrm{T}_{\mathrm{L}} \\
A & =\frac{T_{\mathrm{L}}}{\left(1-R_{\mathrm{L}} R_{R}\right)}
\end{aligned}
$$

then:

$$
\begin{aligned}
& B=A R_{R} S O \\
& B=\frac{T_{L} T_{R}}{\left(1-R_{L} R_{R}\right)}
\end{aligned}
$$

Why does right-going A have something other than T_{L} ?

$$
A=\frac{T_{L}}{\left(1-R_{L} R_{R}\right)}
$$

3.4 problem c

Expand:

$$
\frac{1}{\left(1-R_{L} R_{R}\right)}=1+R_{L} R_{R}+R_{L}^{2} R_{R}^{2}+\cdots
$$

So A is

$$
A=T_{L}+T_{L} R_{L} R_{R}+T_{L} R_{L}^{2} R_{R}^{2}+\cdots
$$

and B is

$$
B=T_{L} R_{R}+T_{L} R_{L} R_{R}^{2}+T_{L} R_{L}^{2} R_{R}^{3}+\cdots
$$

Notice that the terms in the series show the successive reflections. Including $B=A R_{R}$ gives the terms for the extra reflections from the right for the left-going B wave.
3.4 Problem d Easily substitute in expressions for A, B to get

$$
\begin{gathered}
R=R_{L}+\frac{T_{L}^{2} R_{R}}{\left(1-R_{L} R_{R}\right)} \\
T=\frac{T_{L} T_{R}}{\left(1-R_{L} R_{R}\right)}
\end{gathered}
$$

Problem e

Now we can see that our original supposition is approximately true

$$
\mathrm{T} \stackrel{?}{=} \mathrm{T}_{\mathrm{L}} \mathrm{~T}_{\mathrm{R}} .
$$

if $R_{L} R_{R} \rightarrow 0$.

Building up stacks by recursion.

Suppose we have a stack of \mathfrak{n} layers on the left with $R_{L}=R_{n}$ and $T_{L}=T_{n}$. We add single layer on the right of known $R_{R}=r_{n+1}$ and $T_{R}=t_{n+1}$. The new coefficients for the new stack will be

$$
\begin{gathered}
R_{n+1}=R_{n}+\frac{T_{n}^{2} r_{n+1}}{\left(1-R_{n} R_{n+1}\right)} \\
T_{n+1}=\frac{T_{n} t_{n+1}}{\left(1-R_{n} R_{n+1}\right)}
\end{gathered}
$$

This is a wonderful job for a computer, you can build up total coefficients for large stacks of layers this way.

Problem \mathbf{f} is just to realize what T_{0}, R_{0} are for "nothing" and then see how to build up from there.

Homework

Work out the Taylor series for two dimensions: Problems $3.1 \mathbf{f}-\mathbf{g}$.

Do the complete bouncing ball analysis: Problems 3.3 a-f.

Due 5 pm Monday Feb. 5.

