Changing coordinate systems

Math Methods, D. Craig

2007-02-02

The relation between the unit vectors can be written in the symbolic form:

$$
\left(\begin{array}{l}
\hat{r} \\
\hat{\theta} \\
\hat{\phi}
\end{array}\right)=\mathbf{M}\left(\begin{array}{l}
\hat{x} \\
\hat{y} \\
z
\end{array}\right),
$$

with M given by

$$
\mathbf{M}=\left(\begin{array}{ccc}
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0
\end{array}\right) .
$$

This way of writing it is not completely legit, since we have "vectors of vectors" but it is a convenient shorthand for eqn. 4.13.

The coordinates $\left(u_{r}, u_{\theta}, u_{\phi}\right)$ and $\left(u_{x}, u_{y}, u_{z}\right)$ can be related by plugging the these expressions into $\overrightarrow{\mathbf{u}}=u_{r} \hat{\mathbf{r}}+u_{\theta} \hat{\theta}+u_{\phi} \hat{\phi}$:
$\left(\begin{array}{l}u_{x} \\ u_{y} \\ u_{z}\end{array}\right)=\left(\begin{array}{ccc}\sin \theta \cos \phi & \cos \theta \cos \phi & -\sin \phi \\ \sin \theta \sin \phi & \cos \theta \sin \phi & \cos \phi \\ \cos \theta & -\sin \phi & 0\end{array}\right)\left(\begin{array}{l}u_{r} \\ u_{\theta} \\ u_{\phi}\end{array}\right)$
And we see that this is the transpose of the previous matrix:

$$
\left(\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right)=\mathbf{M}^{T}\left(\begin{array}{l}
u_{r} \\
u_{\theta} \\
u_{\phi}
\end{array}\right)
$$

Remember the transpose is to swap rows and columns: $M_{i j}^{\top}=M_{j i}$.

Now we want the relation to run the other way, we want the spherical coordinates in terms of the cartesian coordinates. Multiply by the inverse $\left(\mathbf{M}^{\top}\right)^{-1}$:

$$
\left(\mathbf{M}^{\top}\right)^{-1}\left(\begin{array}{l}
\mathfrak{u}_{x} \\
\mathfrak{u}_{y} \\
\mathfrak{u}_{z}
\end{array}\right)=\left(\mathbf{M}^{\top}\right)^{-1} \mathbf{M}^{\top}\left(\begin{array}{l}
\mathbf{u}_{r} \\
\mathfrak{u}_{\theta} \\
\mathfrak{u}_{\phi}
\end{array}\right)
$$

matrix times its inverse gives identity:

$$
\left(\mathbf{M}^{\top}\right)^{-1}\left(\begin{array}{l}
\mathfrak{u}_{x} \\
\mathfrak{u}_{y} \\
\mathfrak{u}_{z}
\end{array}\right)=\mathbf{I}\left(\begin{array}{l}
\mathfrak{u}_{r} \\
\mathfrak{u}_{\theta} \\
\mathfrak{u}_{\phi}
\end{array}\right)
$$

which acts like the number 1 :

$$
\left(\mathbf{M}^{\top}\right)^{-1}\left(\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right)=\left(\begin{array}{c}
u_{r} \\
u_{\theta} \\
u_{\phi}
\end{array}\right)
$$

So now we have what we want, but what is $\left(\mathbf{M}^{\top}\right)^{-1}$?

All the columns and rows of \mathbf{M} are orthogonal (check by dot products). So \mathbf{M} is an orthogonal matrix, which means

$$
\mathbf{M}^{-1}=\mathbf{M}^{\top}
$$

This can be verified by calculating $\mathbf{M M}^{\top}$ and $\mathbf{M}^{\boldsymbol{\top}} \mathbf{M}$ (prob 4.2d)

So $\mathbf{M}^{-1}=\mathbf{M}^{\top}$, So

$$
\left(\mathbf{M}^{\top}\right)^{-1}=\left(\mathbf{M}^{-1}\right)^{-1}=\mathbf{M}
$$

and so

$$
\left(\begin{array}{l}
u_{r} \\
u_{\theta} \\
u_{\phi}
\end{array}\right)=\mathbf{M}\left(\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right) .
$$

Why?

Consider

$$
\overrightarrow{\mathbf{v}}=v_{\mathrm{r}} \hat{\mathbf{r}}+v_{\theta} \hat{\theta}+v_{\phi} \hat{\phi}
$$

in spherical coordinates. If one takes derivatives to see what this is explicitly:

$$
\overrightarrow{\mathbf{v}}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta}+r \sin \theta \dot{\phi} \hat{\phi} .
$$

This because, for example: $\hat{\boldsymbol{r}}=\hat{\mathbf{r}}(\theta, \phi)$. The spherical unit vectors are dependent on the coordinates. The basis vectors change as a particle moves.

So this machinery is needed to convert coordinates. The acceleration is even more complex (see Problem 4.3e and equation 4.27.)

Volume integration

$$
\iiint F d V=\iiint F(x, y, z) d x d y d z
$$

Volume spanned by three vectors:

$$
\text { volume }=\operatorname{det}(\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}})=\left|\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right| .
$$

Let $\theta \rightarrow \theta+\mathrm{d} \theta$, then $\overrightarrow{\mathbf{r}}(\mathrm{r}, \theta, \phi) \rightarrow \overrightarrow{\mathbf{r}}(\mathrm{r}, \theta+\mathrm{d} \theta, \phi)$ which gives a change

$$
\overrightarrow{\mathbf{r}}(\mathrm{r}, \theta+\mathrm{d} \theta, \phi)-\overrightarrow{\mathbf{r}}(\mathrm{r}, \theta, \phi)=\frac{\partial \overrightarrow{\mathbf{r}}}{\partial \theta} \mathrm{d} \theta .
$$

This will be the infinitesimal vector along the θ direction. Similar reasoning applies to the others. So we get a little volume element:

$$
\mathrm{dV}=\operatorname{det}\left(\frac{\partial \overrightarrow{\mathbf{r}}}{\partial \mathrm{r}} \mathrm{dr}, \frac{\partial \overrightarrow{\mathbf{r}}}{\partial \theta} \mathrm{~d} \theta, \frac{\partial \overrightarrow{\mathbf{r}}}{\partial \phi} \mathrm{~d} \phi\right)
$$

The symbolic determinant is the $\mathrm{dV}=\mathrm{Jdrd} \theta \mathrm{d} \phi$, the volume element. It can be written as in problem 4.4b, equation 4.31. The usual shorthand notation for J is:

$$
\mathrm{J}=\frac{\partial(\mathrm{x}, \mathrm{y}, \mathrm{z})}{\partial(\mathrm{r}, \theta, \phi)} .
$$

If you plug in the expression for $\overrightarrow{\mathbf{r}}$ and take many partials and work out the determinant for spherical coordinates, you find that.

$$
\mathrm{J}=\mathrm{r}^{2} \sin \theta,
$$

So the spherical volume element is

$$
d V=r^{2} \sin \theta d r d \theta d \phi
$$

This can be done by geometric arguments (as you have probably seen before this) but the Jacobian handles more general coordinate systems.

Cylindrical coordinates

The text shows a clever set of substitutions for deriving equivalent results for cylindrical coordinates, based on the fact that they are the same at the equator of the sphere:

$$
\begin{aligned}
\mathrm{r}=\sqrt{\mathrm{x}^{2}+y^{2}}+z^{2} & \rightarrow \sqrt{x^{2}+y^{2}}, \\
\theta & \rightarrow \pi / 2, \\
\hat{\theta} & \rightarrow-\mathrm{z}, \\
\mathrm{rd} \theta & \rightarrow-\mathrm{d} z .
\end{aligned}
$$

