Ch. 5: Gradient 1

D. Craig, WTAMU
2007-02-05

Gradient of a function

- C

${ }^{\bullet}$
δx
B

Consider a point A at $(x, y), B$ at $(x+\delta x, y)$, and C at $(x+\delta x, y+\delta y)$, with values of f at these points.

$$
\begin{aligned}
\delta f & =f_{C}-f_{A} \\
& =f_{B}+\left(f_{C}-f_{A}\right)-f_{B} \\
& =f_{B}-f_{A}+f_{C}-f_{B}
\end{aligned}
$$

Then these can be written

$$
\begin{aligned}
f_{B}-f_{A} & =\frac{\partial f}{\partial x}(x, y) \delta x \\
f_{C}-f_{B} & =\frac{\partial f}{\partial y}(x+\delta x, y) \delta y
\end{aligned}
$$

So the change in the function value f is

$$
\begin{gathered}
\delta f=\frac{\partial f}{\partial x}(x, y) \delta x+\underbrace{\frac{\partial f}{\partial y}(x+\delta x, y) \delta y}_{\text {note }} \\
\frac{\partial f}{\partial y}(x+\delta x, y) \delta y \rightarrow \frac{\partial f}{\partial y}(x, y) \delta y
\end{gathered}
$$

because from Taylor expansion:

$$
\frac{\partial f}{\partial y}(x+\delta x, y) \delta y=\frac{\partial f}{\partial y}(x, y) \delta y+\frac{\partial^{2} f}{\partial x \partial y}(x, y) \underbrace{\delta x \delta y}_{\text {vanish }}
$$

So we have

$$
\delta f=\frac{\partial f}{\partial x}(x, y) \delta x+\frac{\partial f}{\partial y}(x, y) \delta y
$$

Recall $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=a_{x} b_{x}+a_{y} b_{y}$:

$$
\begin{aligned}
& \delta \overrightarrow{\mathbf{r}}=\left(\overrightarrow{\mathbf{r}}_{C}-\overrightarrow{\mathbf{r}}_{A}\right) \\
& \delta \overrightarrow{\mathbf{r}}=\binom{\delta x}{\delta \mathrm{y}}
\end{aligned}
$$

and define a (column) vector

$$
\nabla f=\binom{\partial f / \partial x}{\partial f / \partial y}
$$

So a small change in f is given by

$$
\delta f=(\nabla f \cdot \delta \overrightarrow{\mathbf{r}})
$$

where ∇f is a vector * called the gradient. Also sometimes written grad x.
*There is a more modern vector space approach to this. It is a dual vector or 1 -form.

If

$$
\delta f=(\nabla f \cdot \delta \overrightarrow{\mathbf{r}}),
$$

from the definition of dot product

$$
\delta f=|\nabla f||\delta \overrightarrow{\mathbf{r}}| \cos \theta
$$

θ is the angle between the gradient and $\delta \overrightarrow{\mathbf{r}}$.
$\nabla \mathrm{f}$ points toward the direction of increasing f . If $\delta \overrightarrow{\mathbf{r}}$ points along the gradient, then $\theta=0$, and

$$
\begin{gathered}
\delta f=|\nabla f||\delta \overrightarrow{\mathbf{r}}|, \\
|\nabla f|=\frac{\delta f}{|\delta \overrightarrow{\mathbf{r}}|}
\end{gathered}
$$

In terms of contour lines, the gradient points "uphill", and the closer the contour lines, the steeper the gradient. The gradient will have dimensions of whatever f is divided by length.

Three dimensions

This generalizes directly to three dimensions:

$$
\begin{aligned}
\delta \overrightarrow{\mathbf{r}} & =\left(\begin{array}{l}
\delta x \\
\delta y \\
\delta z
\end{array}\right) \\
\nabla f & =\left(\begin{array}{l}
\partial f / \partial x \\
\partial f / \partial y \\
\partial f / \partial z
\end{array}\right)
\end{aligned}
$$

Beyond 3-D, more machinery is needed, and the modern approach there uses tensor calculus, and/or multivectors or vectors and dual vectors.

Integration

In one-dimensional calculus, a change over a finite interval can be seen as a sum of infinitesimal steps, which leads to the definition of the definite integral. In two or three dimensions we have a change over a path instead.

The change in the function value from A to B will be
$f_{B}-f_{A}=\left(f_{B}-f_{N}\right)+\left(f_{N}-f_{N-1}\right)+\cdots+\left(f_{2}-f_{1}\right)+\left(f_{1}-f_{A}\right)$ each step has a $\delta \mathrm{f}$ associated

$$
\delta f=(\nabla f \cdot \delta \overrightarrow{\mathbf{r}})
$$

with $\delta \overrightarrow{\mathbf{r}}$'s along (tangent to) the path. So

$$
f_{B}-f_{A}=\sum_{N}(\nabla f \cdot \delta \overrightarrow{\mathbf{r}}) .
$$

Let $\mathrm{N} \rightarrow \infty$ and $\delta \overrightarrow{\mathbf{r}} \rightarrow \mathrm{d} \overrightarrow{\mathbf{r}}$ to get

$$
\mathrm{f}_{\mathrm{B}}-\mathrm{f}_{\mathrm{A}}=\int_{\mathcal{A}}^{\mathrm{B}}(\nabla \mathrm{f} \cdot \mathrm{~d} \overrightarrow{\mathbf{r}}),
$$

where the integral is along any path from A to B.

If you close the path, you come back to the same point, so

$$
\oint(\nabla f \cdot d \overrightarrow{\mathbf{r}})=0 .
$$

The path integral of the gradient along a closed path vanishes.

Differentiation: directional derivative

Define a derivative in a direction $\widehat{\mathrm{n}}$.

$$
\frac{\mathrm{df}}{\mathrm{ds}}(\overrightarrow{\mathbf{r}})=\lim _{\delta s \rightarrow 0} \frac{\mathrm{f}(\overrightarrow{\mathbf{r}}+\hat{\mathbf{n}} \delta s)-\mathrm{f}(\overrightarrow{\mathbf{r}})}{\delta s}=\frac{\delta \mathrm{f}}{\delta \mathrm{~s}}
$$

with $\delta f=(\nabla f \cdot \delta \overrightarrow{\mathbf{r}})$. In this case $\delta r=\hat{\mathrm{n}} \delta \mathrm{s}$ and so

$$
\begin{aligned}
\frac{\mathrm{df}}{\mathrm{ds}}(\overrightarrow{\mathbf{r}}) & =\frac{(\nabla \mathrm{f} \cdot \hat{\mathbf{n}}) \delta \mathrm{s}}{\delta \mathrm{~s}} \\
& =(\hat{\mathbf{n}} \cdot \nabla \mathrm{f}) .
\end{aligned}
$$

This is the derivative of f in the direction $\widehat{\mathrm{n}}$.

So we have generalized the derivative to a path integral, and the derivative to a directional derivative, in moving to 2 and 3 dimensional space.

