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Suppose we have a particle moving in a sys-

tem characterized by a potential V(~r). Its total

energy is the sum of the kinetic energy and

potential energy:

1

2
mv2 + V(~r) = E.

Assume that E is conserved, so

dE

dt
= 0.

We want to take the time derivative of both

sides of the first equation. First term is not

too hard:
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For the time derivative of the potential energy,

we have to remember that even though V itself

doesn’t change in time, ~r(t) does. So we have

dV(~r)

dt
= lim

δt→0

V(~r(t + δt)) − V(~r(t))

δt
,

with δV = V(~r(t+δt))−V(~r(t)). Now δV = ∇V ·δ~r
so

dV(~r)

dt
= lim

δt→0

∇V · δr

δt
= (~v · ∇V).

Putting these results together:

~v ·
(
m

d~v

dt
+ ∇V

)
= 0.

~v is any arbitrary velocity, so the term in paren-

theses must always be zero:

m
d~v

dt
= −∇V = ~F,

which is Newton’s second law.
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So Newton’s second law can be derived from

energy conservation. We have also shown that

~F = −∇V,

which is an important general idea: forces arise

from changes in the potential energy function

acting on a particle.

In two or three dimensions the change along a

path can be characterized by the gradient.
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