Total time derivative Continuous systems

Homework for Ch. 4 and 5

Math Methods, D. Craig

2007-02-07

Total and partial time derivatives

If you're a stationary observer monitoring the temperature of the air as the wind goes by, and you detect an increase

$$
\frac{\partial T}{\partial t}>0
$$

this is written with a partial because $\mathrm{T}=\mathrm{T}(\overrightarrow{\mathbf{r}}, \mathrm{t})$ In the definition of the partial derivative time is varied but other variables are fixed.

If you're in a ballon moving through stationary T field then $\partial \mathrm{T} / \partial \mathrm{t}=0$ while you can have

$$
\frac{d T}{d t}>0
$$

This is because you are moving along at $d \overrightarrow{\mathbf{r}} / \mathrm{dt}=$ \vec{v}.

For the particular case of moving through a stationary $\mathrm{T}(\overrightarrow{\mathbf{r}})$:

$$
\frac{\mathrm{dT}(\overrightarrow{\mathbf{r}})}{\mathrm{dt}}=(\overrightarrow{\mathbf{v}} \cdot \nabla \mathrm{T})
$$

Problems $5.5 \mathrm{c}-\mathrm{f}$ work out the steps for getting the total time deriviative explicitly. In the general case of $f=f(\overrightarrow{\mathbf{r}}, \mathrm{t})$, then

$$
\frac{\mathrm{df}(\overrightarrow{\mathbf{r}}, \mathrm{t})}{\mathrm{dt}}=\frac{\partial \mathrm{f}(\overrightarrow{\mathbf{r}}, \mathrm{t})}{\partial \mathrm{t}}+\overrightarrow{\mathbf{v}} \cdot \nabla \mathrm{f}(\overrightarrow{\mathbf{r}}, \mathrm{t})
$$

is the total time derivative.

It is related to the movement of a quantity. In a gas it may be the movement of a parcel of material carried around by the flow.

In general there are two ways to describe continuous systems (such as fluids):

Eulerian description: describe every quantity at a fixed location in space. Then the change with properties in time is described by $\partial d / \partial t$.

Lagrangian description: follow a property as carried by the flow. Then change is described by total time derivative d / dt.

Eulerian is often most convenient for numerical simulation, however if one must track particles or parcels, Lagrangian description is most useful.

Gradient in spherical coordinates

$$
\nabla f=\hat{r} \frac{\partial f}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}+\hat{\phi} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi}
$$

In cylindrical coordinates

$$
\nabla f=\hat{r} \frac{\partial f}{\partial r}+\hat{\phi} \frac{1}{r} \frac{\partial f}{\partial \phi}+z \frac{\partial f}{\partial z}
$$

Homework assignment 3 for Ch. 4 and 5
4.4c Taking the Jacobian with the determinant.
4.5 b and c Cylindrical coordinates. The geometric reasoning is easier than the spherical case.
5.4 f Extending force analysis to power.
5.5 g Showing the balloon and stationary observers both work out with total time derivative.

Due Tuesday Feb. 13 by 3 pm .

