Divergence: radial solutions, sec. 6.2,6.5 Cross product review

 Math Methods, D. Craig2007-02-14

To understand the orbit stability example (section 6.5) one detail that is needed is very similar to Problem 6.2(a): Using

$$
r=\sqrt{x^{2}+y^{2}}
$$

Show that

$$
\begin{equation*}
\frac{\partial r}{\partial x}=\frac{x}{r}, \tag{1}
\end{equation*}
$$

and then that

$$
\begin{equation*}
(\nabla \cdot \vec{v})=2 f(r)+r \frac{d f}{d r} \tag{2}
\end{equation*}
$$

when the field is radially symmetric:

$$
\begin{equation*}
\overrightarrow{\mathbf{v}}=\mathrm{f}(\mathrm{r}) \overrightarrow{\mathbf{r}} . \tag{3}
\end{equation*}
$$

The first part is simple:

$$
\begin{align*}
\frac{\partial r}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right)^{1 / 2} \tag{4}\\
& =2 x\left(\frac{1}{2}\right)\left(x^{2}+y^{2}\right)^{-1 / 2} \tag{5}\\
& =\frac{x}{\left(x^{2}+y^{2}\right)^{1 / 2}}=\frac{x}{r}
\end{align*}
$$

For the next step, the key is to realize that simply

$$
\overrightarrow{\mathbf{r}}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}} .
$$

Forgetting this type of simple approach can drive you batty in vector calculus.

So, to take the divergence:

$$
\begin{align*}
(\nabla \cdot \overrightarrow{\mathbf{v}}) & =\frac{\partial}{\partial x}(f(r) x)+\frac{\partial}{\partial y}(f(r) y), \tag{7}\\
& =x \frac{\partial}{\partial x} f(r)+f(r) \frac{\partial x}{\partial x},+y \frac{\partial}{\partial y} f(r)+f(r) \frac{\partial y}{\partial y}, \tag{8}\\
& =x \frac{d f}{d r} \frac{\partial r}{\partial x}+f(r)+y \frac{d f}{d r} \frac{\partial r}{\partial y}+f(r), \tag{9}
\end{align*}
$$

using our previous result:

$$
\begin{align*}
& =2 f(r)+\left(\frac{x^{2}+y^{2}}{r}\right) \frac{d f}{d r}, \tag{10}\\
& =2 f(r)+r \frac{d f}{d r}, \text { Q.E.D } \tag{11}
\end{align*}
$$

The same result extended to N dimensions is Problem 6.5 b.

Quick review of cross product.

It is an inherently three-dimensional product*

$$
\begin{equation*}
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta \hat{\mathbf{n}} \tag{12}
\end{equation*}
$$

θ is the angle between $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$. $\hat{\mathbf{n}}$ is normal to the plane containing them. The orientation of \hat{n} is chosen by the handedness of the coordinate system, usually right-hand-rule nowadays. This dependence on the choice for handedness makes it a psuedovector.

The magnitude

$$
|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|=|\overrightarrow{\mathbf{a}}||\overrightarrow{\mathbf{b}}| \sin \theta
$$

is the area of the parallelogram spanned by $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$.

The fact that it can be used to get areas and normals is very important in computer graphics, particularly in 3-d rendering systems.
*Apparently it may also be defined consistently in 7 dimensions. See Wikipedia.

Image from

http://en.wikipedia.org/wiki/Cross_product

Algebraic properties

Cross product is anticommutative, and is in general not associative. Hence many identities using it are non-obvious. Keep references at hand when doing vector algebra.

Calculation

Four ways to remember it:

- Symbolic determinant
- Skew-symmetric matrix
- Levi-Civita symbol and indices
- Brute memorization (ick.)

Let $\hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \hat{\mathbf{e}}_{3}=\hat{\mathbf{x}}, \widehat{\mathbf{y}}, \mathbf{z}$, then

$$
\begin{align*}
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} & =\left|\begin{array}{lll}
\hat{\mathbf{e}}_{1} & \hat{\mathbf{e}}_{2} & \hat{e}_{3} \\
a_{1} & a_{2} & a_{3} \\
\mathbf{b}_{1} & b_{2} & b_{3}
\end{array}\right| \tag{13}\\
& =\sum_{i, j, k=1}^{3} \epsilon_{i j k} \hat{e}_{i} a_{j} b_{k} \tag{1}
\end{align*}
$$

The Levi-Civita symbol $\epsilon_{i j k}$ is
$\epsilon_{i j k}= \begin{cases}+1 & \text { when }(i, j, k)=(1,2,3),(2,3,1),(3,1,2) ; \\ -1 & \text { when }(i, j, k)=(3,2,1),(2,1,3),(1,3,2) ; \\ 0 & \text { all other cases (any repeated indices) } .\end{cases}$
Note the cyclic order-this is how you can remember it: if the indices go forward from 1, it is +1 (wrap at end), otherwise $-1,0$ if any repeats.

There is an interesting graphical representation of $\epsilon_{\mathfrak{i j k}}$ at Wikipedia:
http://en.wikipedia.org/wiki/Levi_civita_symbol

The skew-symmetric matrix form:

$$
\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\mathbf{A}_{\times} \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]
$$

