Pre-class draft of the steps in section 8.3 TTVN Math Methods

D. Craig, WTAMU 2007-02-20

1 Introduction

This is a worked out set of the steps in section 8.3 of Snieder. This is a more compact form for reading than the slide format I usually use. You can print this out to follow the steps with a bit more commentary.

I may revise it a bit before presentation Wednesday, and I will probably recast it as slides for presentation on the screen, though I probably won't include all the steps.

As you follow this, try to visualize what the terms and integrals mean.

2 The acoustic representation theorem

The acoustic pressure field $p(\overrightarrow{\mathbf{r}})$ satusfies the following PDE in frequency domain:

$$
\nabla\left(\frac{1}{\rho} \nabla p\right)+\frac{\omega^{2}}{\kappa} p=f
$$

$\rho(\overrightarrow{\mathbf{r}})$ is the mass-density, ω is angular frequency, $\kappa(\overrightarrow{\mathbf{r}})$ is compressibility. $f(\overrightarrow{\mathbf{r}})$ is the source (driving) term, such as the pressure exerted by speaker in air, or a rock movement in an earthquake in the earth's crust. This is a driven wave equation, in a medium that may vary in its properties with position.

Consider two fields $p_{1}(\overrightarrow{\mathbf{r}})$ and $p_{2}(\overrightarrow{\mathbf{r}})$ that satisfy this, with two sources $f_{1}(\overrightarrow{\mathbf{r}})$ and $f_{2}(\overrightarrow{\mathbf{r}})$. (In all of the following $\overrightarrow{\mathbf{r}}$ and $\overrightarrow{\mathbf{r}}_{0}$ are position vectors denoting points in our medium.)

Multiply the PDE above for p_{1} by p_{2}, and for p_{2} by p_{1}, subtract them, and integrate over a volume of interest: ${ }^{1}$

$$
\int_{V}\left[p_{2} \nabla \cdot\left(\frac{1}{\rho} \nabla p_{1}\right)-p_{1} \nabla \cdot\left(\frac{1}{\rho} \nabla p_{2}\right)\right] d V=\int_{V}\left(p_{2} f_{1}-p_{1} f_{2}\right) d V
$$

[^0]For a vector $\overrightarrow{\mathbf{v}}$ and a scalar field f, you can expand out the components to show that

$$
\nabla \cdot(\mathrm{f} \overrightarrow{\mathbf{v}})=\mathrm{f}(\nabla \cdot \overrightarrow{\mathbf{v}})+\overrightarrow{\mathbf{v}} \cdot \nabla \mathrm{f}
$$

Then

$$
\nabla \cdot\left(\frac{1}{\rho} \mathfrak{p}_{2} \nabla \mathfrak{p}_{1}\right)=\mathfrak{p}_{2} \nabla \cdot\left(\frac{1}{\rho} \nabla \mathfrak{p}_{1}\right)+\frac{1}{\rho}\left(\nabla \mathfrak{p}_{1} \cdot \nabla \mathfrak{p}_{2}\right)
$$

rearranging

$$
p_{2} \nabla \cdot\left(\frac{1}{\rho} \nabla p_{1}\right)=\nabla \cdot\left(\frac{1}{\rho} p_{2} \nabla p_{1}\right)-\frac{1}{\rho}\left(\nabla p_{1} \cdot \nabla p_{2}\right)
$$

and likewise for p_{1}, p_{2} in the other order. This is the result for problem 8.3c Now put the two versions of this back in the expression

$$
\int_{V}\left[p_{2} \nabla \cdot\left(\frac{1}{\rho} \nabla p_{1}\right)-p_{1} \nabla \cdot\left(\frac{1}{\rho} \nabla p_{2}\right)\right] d V
$$

You will have two identical terms of $(1 / \rho)\left(\nabla p_{1} \cdot \nabla p_{2}\right)$, they will cancel. You are left with

$$
\int_{V}\left[\nabla \cdot\left(\frac{1}{\rho} \mathfrak{p}_{2} \nabla \mathfrak{p}_{1}\right)-\nabla \cdot\left(\frac{1}{\rho} \mathfrak{p}_{1} \nabla \mathfrak{p}_{2}\right)\right] d V
$$

This is the difference of two divergences, so by Gauss's Law, we turn this into a surface integral. Then the big integral expression we started with becomes:

$$
\oint_{S} \frac{1}{\rho}\left(p_{2} \nabla p_{1}-p_{1} \nabla p_{2}\right) \cdot d \overrightarrow{\mathbf{S}}=\int_{V}\left(p_{2} f_{1}-p_{1} f_{2}\right) d V
$$

To see what this means, we restrict to the special case of a point source (see text). Let the source term $f_{2} \neq 0$ only in a tiny neighborhood around $\overrightarrow{\mathbf{r}}_{0} .{ }^{2}$

$$
\oint_{S} \frac{1}{\rho}\left(p 2 \nabla p_{1}-p_{1} \nabla p_{2}\right) \cdot d \overrightarrow{\mathbf{S}}=\int_{V}\left(p_{2} f_{1}\right) d V-p\left(\overrightarrow{\mathbf{r}}_{0}\right)
$$

The wavefield p_{2} is generated by this "point" source, is called the Green's function-it is response of system at one point to a localized disturbance elsewhere:

$$
p_{2} \rightarrow G\left(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}_{0}\right)
$$

So

$$
\oint_{S} \frac{1}{\rho}\left(G\left(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}_{0}\right) \nabla p_{1}-p_{1} \nabla \mathrm{G}\left(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}_{0}\right)\right) \cdot d \overrightarrow{\mathbf{S}}=\int_{V}\left(p_{2} f_{1}\right) \mathrm{dV}-\mathrm{p}\left(\overrightarrow{\mathbf{r}}_{0}\right)
$$

Let's have no other sources within the volume: $\mathrm{f}_{1} \rightarrow 0$, and we drop the subscript on p_{1}, taking p as our "response".

$$
\oint_{S} \frac{1}{\rho}\left(\mathrm{G}\left(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}_{0}\right) \nabla \mathrm{p}-\mathrm{p} \nabla \mathrm{G}\left(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}_{0}\right)\right) \cdot \mathrm{d} \overrightarrow{\mathbf{S}}=-\mathrm{p}\left(\overrightarrow{\mathbf{r}}_{0}\right)
$$

[^1]and rearrange the minus signs to get the desired result:
$$
\mathfrak{p}\left(\overrightarrow{\mathbf{r}}_{0}\right)=\oint_{S} \frac{1}{\rho}\left(\mathfrak{p}(\overrightarrow{\mathbf{r}}) \nabla \mathrm{G}\left(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}_{0}\right)-\mathrm{G}\left(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}_{0}\right) \nabla \mathrm{p}(\overrightarrow{\mathbf{r}})\right) \cdot \mathrm{d} \overrightarrow{\mathbf{S}}
$$

What does this equation mean? $\overrightarrow{\mathbf{r}}_{0}$ is an arbitray point inside the volume. $\mathrm{G}\left(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}_{0}\right)$ is the wavefield that would appear at $\overrightarrow{\mathbf{r}}$ due to a unit point source at $\overrightarrow{\mathbf{r}}_{0} . \mathrm{p}(\overrightarrow{\mathbf{r}})$ is the wavefield say, detected at $\overrightarrow{\mathbf{r}}$.

If we know $\mathrm{G}\left(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}_{0}\right), p(\overrightarrow{\mathbf{r}}), \nabla \mathrm{p}(\overrightarrow{\mathbf{r}})$ for points on a boundary, we can get $\mathrm{p}\left(\overrightarrow{\mathbf{r}}_{0}\right)$ for any arbitrary $\overrightarrow{\mathbf{r}}_{0}$ within the volume bounded by it.

The catch-what is $G\left(\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{r}}_{0}\right)$? Often this can be produced by successive approximation based on preliminary estimates, and partial data, but the devil is in the details.

[^0]: ${ }^{1}$ Say, the Permian basin, or the room containing your stereo.

[^1]: ${ }^{2}$ Or be a delta function source: Ch. 14.

