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1 Introduction

This is a worked out set of the steps in section 8.3 of Snieder. This is a more
compact form for reading than the slide format I usually use. You can print
this out to follow the steps with a bit more commentary.

I may revise it a bit before presentation Wednesday, and I will probably
recast it as slides for presentation on the screen, though I probably won'’t include
all the steps.

As you follow this, try to visualize what the terms and integrals mean.

2 The acoustic representation theorem

The acoustic pressure field p(r) satusfies the following PDE in frequency do-
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p(7) is the mass-density, w is angular frequency, (F) is compressibility. f(F)
is the source (driving) term, such as the pressure exerted by speaker in air, or
a rock movement in an earthquake in the earth’s crust. This is a driven wave
equation, in a medium that may vary in its properties with position.

Consider two fields p; (r) and p2(¥) that satisfy this, with two sources f; (1)
and f,(r). (In all of the following r and ry are position vectors denoting points
in our medium.)

Multiply the PDE above for p; by p2, and for p; by p1, subtract them, and
integrate over a volume of interest: ?
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!Say, the Permian basin, or the room containing your stereo.




For a vector v and a scalar field f, you can expand out the components to show
that
V. (fv) =1(V-V)+ V- Vf.

Then

rearranging
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and likewise for py,p, in the other order. This is the result for problem 8.3c
Now put the two versions of this back in the expression
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You will have two identical terms of (1/p)(Vp; - Vp2), they will cancel. You

are left with 1 :
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This is the difference of two divergences, so by Gauss’s Law, we turn this into
a surface integral. Then the big integral expression we started with becomes:
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To see what this means, we restrict to the special case of a point source (see
text). Let the source term f, # 0 only in a tiny neighborhood around ry. 2
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The wavefield p, is generated by this “point” source, is called the Green’s
function—it is response of system at one point to a localized disturbance else-
where:
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Let’s have no other sources within the volume: f; — 0, and we drop the sub-
script on p1, taking p as our “response”.
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20r be a delta function source: Ch. 14.




and rearrange the minus signs to get the desired result:

p(To) = i %(D(FJVG(F, £o) — G(E,T0) Vp(F)) - dS

What does this equation mean? 1y is an arbitray point inside the volume.
G(¥, 7o) is the wavefield that would appear at r due to a unit point source at
ro. p(Tr) is the wavefield say, detected at T.

If we know G(¥, 1), p(F), Vp(F) for points on a boundary, we can get p(ro)
for any arbitrary 1y within the volume bounded by it.

The catch—what is G(¥,1)? Often this can be produced by successive
approximation based on preliminary estimates, and partial data, but the devil
is in the details.



