
Pre-class draft of the steps in section 8.3

TTVN Math Methods

D. Craig, WTAMU

2007{02{20

1 Introduction

This is a worked out set of the steps in section 8.3 of Snieder. This is a more

compact form for reading than the slide format I usually use. You can print

this out to follow the steps with a bit more commentary.

I may revise it a bit before presentation Wednesday, and I will probably

recast it as slides for presentation on the screen, though I probably won't include

all the steps.

As you follow this, try to visualize what the terms and integrals mean.

2 The acoustic representation theorem

The acoustic pressure �eld p(~r) satus�es the following PDE in frequency do-

main:

∇
(

1

ρ
∇p

)
+

ω2

κ
p = f

ρ(~r) is the mass-density, ω is angular frequency, κ(~r) is compressibility. f(~r)
is the source (driving) term, such as the pressure exerted by speaker in air, or

a rock movement in an earthquake in the earth's crust. This is a driven wave

equation, in a medium that may vary in its properties with position.

Consider two �elds p1(~r) and p2(~r) that satisfy this, with two sources f1(~r)
and f2(~r). (In all of the following ~r and ~r0 are position vectors denoting points

in our medium.)

Multiply the PDE above for p1 by p2, and for p2 by p1, subtract them, and

integrate over a volume of interest: 1∫
V

[
p2∇ ·

(
1

ρ
∇p1

)
− p1∇ ·

(
1

ρ
∇p2

)]
dV =

∫
V

(p2f1 − p1f2)dV.

1Say, the Permian basin, or the room containing your stereo.
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For a vector ~v and a scalar �eld f, you can expand out the components to show

that

∇ · (f~v) = f(∇ · ~v) + ~v · ∇f.

Then

∇ ·
(

1

ρ
p2∇p1

)
= p2∇ ·

(
1

ρ
∇p1

)
+

1

ρ
(∇p1 · ∇p2),

rearranging

p2∇ ·
(

1

ρ
∇p1

)
= ∇ ·

(
1

ρ
p2∇p1

)
−

1

ρ
(∇p1 · ∇p2),

and likewise for p1, p2 in the other order. This is the result for problem 8.3c

Now put the two versions of this back in the expression∫
V

[
p2∇ ·

(
1

ρ
∇p1

)
− p1∇ ·

(
1

ρ
∇p2

)]
dV

You will have two identical terms of (1/ρ)(∇p1 · ∇p2), they will cancel. You

are left with ∫
V

[
∇ ·

(
1

ρ
p2∇p1

)
− ∇ ·

(
1

ρ
p1∇p2

)]
dV

This is the di�erence of two divergences, so by Gauss's Law, we turn this into

a surface integral. Then the big integral expression we started with becomes:∮
S

1

ρ
(p2∇p1 − p1∇p2) · d~S =

∫
V

(p2f1 − p1f2)dV.

To see what this means, we restrict to the special case of a point source (see

text). Let the source term f2 6= 0 only in a tiny neighborhood around ~r0.
2∮

S

1

ρ
(p2∇p1 − p1∇p2) · d~S =

∫
V

(p2f1)dV − p(~r0)

The wave�eld p2 is generated by this \point" source, is called the Green's

function|it is response of system at one point to a localized disturbance else-

where:

p2 → G(~r,~r0)

So ∮
S

1

ρ
(G(~r,~r0)∇p1 − p1∇G(~r,~r0)) · d~S =

∫
V

(p2f1)dV − p(~r0)

Let's have no other sources within the volume: f1 → 0, and we drop the sub-

script on p1, taking p as our \response".∮
S

1

ρ
(G(~r,~r0)∇p − p∇G(~r,~r0)) · d~S = −p(~r0)

2Or be a delta function source: Ch. 14.
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and rearrange the minus signs to get the desired result:

p(~r0) =

∮
S

1

ρ
(p(~r)∇G(~r,~r0) − G(~r,~r0)∇p(~r)) · d~S

What does this equation mean? ~r0 is an arbitray point inside the volume.

G(~r,~r0) is the wave�eld that would appear at ~r due to a unit point source at

~r0. p(~r) is the wave�eld say, detected at ~r.
If we know G(~r,~r0), p(~r),∇p(~r) for points on a boundary, we can get p(~r0)

for any arbitrary ~r0 within the volume bounded by it.

The catch|what is G(~r,~r0)? Often this can be produced by successive

approximation based on preliminary estimates, and partial data, but the devil

is in the details.
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