## 8.3: Acoustic representation theorem

Math Methods, D. Craig

2007-02-21

## Acoustic representation theorem

- Application of Gauss Theorem to wave problem.
- First look at Green's functions— "response" of system to localized disturbance
- Representation theorems—determine inside behavior by boundary behavior
- leads to Huygen's principle for acoustic waves.
- Inverse problems

The acoustic pressure field  $p(\vec{r})$  satusfies the following PDE in frequency domain:

$$\nabla\left(\frac{1}{\rho}\nabla p\right) + \frac{\omega^2}{\kappa}p = f$$

 $\rho(\vec{\mathbf{r}})$  is the mass-density,  $\omega$  is angular frequency,  $\kappa(\vec{\mathbf{r}})$  is compressibility.  $f(\vec{\mathbf{r}})$  is the source (driving) term.

Consider two fields  $p_1(\vec{r})$  and  $p_2(\vec{r})$  that satisfy this, with two sources  $f_1(\vec{r})$  and  $f_2(\vec{r})$ .

Multiply each field by the other and subtract the resulting expressions, then look at volume integral:

$$\begin{split} \int_{V} \left[ p_{2} \nabla \cdot \left( \frac{1}{\rho} \nabla p_{1} \right) - p_{1} \nabla \cdot \left( \frac{1}{\rho} \nabla p_{2} \right) \right] dV \\ &= \int_{V} (p_{2} f_{1} - p_{1} f_{2}) dV. \end{split}$$

use

$$\nabla \cdot (\mathbf{f} \vec{\mathbf{v}}) = \mathbf{f} (\nabla \cdot \vec{\mathbf{v}}) + \vec{\mathbf{v}} \cdot \nabla \mathbf{f}.$$

This will make the left term inside the LHS integral above:

$$\mathfrak{p}_{2}\nabla\cdot\left(\frac{1}{\rho}\nabla\mathfrak{p}_{1}\right)=\nabla\cdot\left(\frac{1}{\rho}\mathfrak{p}_{2}\nabla\mathfrak{p}_{1}\right)-\frac{1}{\rho}(\nabla\mathfrak{p}_{1}\cdot\nabla\mathfrak{p}_{2}),$$

and similarly for the other order for  $p_1, p_2$ . This is sort of like integration by parts.

Put all this in and cancel identical terms. The left integral will be

$$\int_{V} \left[ \nabla \cdot \left( \frac{1}{\rho} p_2 \nabla p_1 \right) - \nabla \cdot \left( \frac{1}{\rho} p_1 \nabla p_2 \right) \right] \, dV$$

A difference of two integrated divergences. We use Gauss Theorem

$$\oint_{S} \vec{\mathbf{v}} \cdot d\vec{\mathbf{S}} = \int_{V} (\nabla \cdot \vec{\mathbf{v}}) \, dV,$$

to turn this into a surface integral, so that

$$\oint_{S} \frac{1}{\rho} (p_2 \nabla p_1 - p_1 \nabla p_2) \cdot d\vec{\mathbf{S}} = \int_{V} (p_2 f_1 - p_1 f_2) \, dV.$$

Now  $p_2$  is driven by  $f_2$ , and  $p_1$  by  $f_1$  We are going to specialize to a case where the driving  $f_2$  is non-zero only at a point  $\vec{r}_0$ , so  $p_2$  is the response of the medium to this special input.

$$\mathbf{p}_2(\vec{\mathbf{r}}) = \mathbf{G}(\vec{\mathbf{r}}, \vec{\mathbf{r}}_0)$$

We will suppose we know this for our medium, for any  $\vec{r}_0$ . This is the Green's function for our medium.

 $p_1$  will be the overall solution we are seeking, supposing we know G. We will suppose there are no sources for the  $p_1$  wavefield, so  $f_1 = 0$  everywhere.

Now we make a lot of substitutions.

The non-obvious step in getting problem e is that, if  $p_2$  is localized at a point  $\vec{r}_0$  then

$$\int_{V} \mathfrak{p}_1 \mathfrak{f}_2 \, \mathrm{d} V = \mathfrak{p}_1(\vec{\mathbf{r}}_0)$$

This is because we have  $f_2 = 0$  everywhere except at  $\vec{\mathbf{r}}_0$ .

This is equivalent to using a *Dirac delta function* source

$$f_2 = \delta(\vec{r} - \vec{r}_0)$$

Where the delta function is **defined** as having the property

$$\int_{\mathbf{V}} g(\vec{\mathbf{r}}) \delta(\vec{\mathbf{r}} - \vec{\mathbf{r}}_0) \, d\mathbf{V} = g(\vec{\mathbf{r}}_0)$$

for  $\vec{\mathbf{r}}_0$  inside the volume. This is a way of handling "point" functions or "spikes" in integrals. When we put all this together we get

$$p(\vec{\mathbf{r}}_0) = \oint_S \frac{1}{\rho} (p(\vec{\mathbf{r}}) \nabla G(\vec{\mathbf{r}}, \vec{\mathbf{r}}_0) - G(\vec{\mathbf{r}}, \vec{\mathbf{r}}_0) \nabla p(\vec{\mathbf{r}})) \cdot d\vec{\mathbf{S}}$$
  
What does this equation mean?

If we know  $G(\vec{r}, \vec{r}_0), p(\vec{r}), \nabla p(\vec{r})$  for points on a boundary, we can get  $p(\vec{r}_0)$  for **any arbitrary**  $\vec{r}_0$  within the volume bounded by it.



## But what is G?

The catch—what is  $G(\vec{r}, \vec{r}_0)$ ? Often this can be produced by successive approximation based on preliminary estimates, and partial data, but the devil is in the details.

This is usually done interatively: estimate G from known properties, model the medium based on known inputs, compare results to inputs, improve G.

Once you have a good estimate of G, you know everything about wave propagation in the medium.

This is known as an "inverse problem."