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Acoustic representation theorem

• Application of Gauss Theorem to wave prob-

lem.

• First look at Green’s functions—“response”

of system to localized disturbance

• Representation theorems—determine inside

behavior by boundary behavior

• leads to Huygen’s principle for acoustic waves.

• Inverse problems
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The acoustic pressure field p(~r) satusfies the

following PDE in frequency domain:

∇
(

1

ρ
∇p

)
+

ω2

κ
p = f

ρ(~r) is the mass-density, ω is angular frequency,

κ(~r) is compressibility. f(~r) is the source (driving)

term.

Consider two fields p1(~r) and p2(~r) that satisfy

this, with two sources f1(~r) and f2(~r).
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Multiply each field by the other and subtract

the resulting expressions, then look at volume

integral:∫
V

[
p2∇ ·

(
1

ρ
∇p1

)
− p1∇ ·

(
1

ρ
∇p2

)]
dV

=

∫
V
(p2f1 − p1f2)dV.

use

∇ · (f~v) = f(∇ · ~v) + ~v · ∇f.

This will make the left term inside the LHS

integral above:

p2∇ ·
(

1

ρ
∇p1

)
= ∇ ·

(
1

ρ
p2∇p1

)
−

1

ρ
(∇p1 · ∇p2),

and similarly for the other order for p1, p2. This

is sort of like integration by parts.
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Put all this in and cancel identical terms. The

left integral will be∫
V

[
∇ ·

(
1

ρ
p2∇p1

)
− ∇ ·

(
1

ρ
p1∇p2

)]
dV

A difference of two integrated divergences. We

use Gauss Theorem∮
S

~v · d~S =

∫
V
(∇ · ~v) dV,

to turn this into a surface integral, so that∮
S

1

ρ
(p2∇p1 − p1∇p2) · d~S =

∫
V
(p2f1 − p1f2) dV.
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Now p2 is driven by f2, and p1 by f1 We are

going to specialize to a case where the driving

f2 is non-zero only at a point ~r0, so p2 is the

response of the medium to this special input.

p2(~r) = G(~r,~r0)

We will suppose we know this for our medium,

for any ~r0. This is the Green’s function for our

medium.

p1 will be the overall solution we are seeking,

supposing we know G. We will suppose there

are no sources for the p1 wavefield, so f1 = 0

everywhere.

Now we make a lot of substitutions.
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The non-obvious step in getting problem e is

that, if p2 is localized at a point ~r0 then∫
V

p1f2 dV = p1(~r0)

This is because we have f2 = 0 everywhere ex-

cept at ~r0.

This is equivalent to using a Dirac delta func-

tion source

f2 = δ(~r −~r0)

Where the delta function is defined as having

the property∫
V

g(~r)δ(~r −~r0) dV = g(~r0)

for ~r0 inside the volume. This is a way of han-

dling “point” functions or “spikes” in integrals.
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When we put all this together we get

p(~r0) =

∮
S

1

ρ
(p(~r)∇G(~r,~r0) − G(~r,~r0)∇p(~r)) · d~S

What does this equation mean?

If we know G(~r,~r0), p(~r),∇p(~r) for points on a

boundary, we can get p(~r0) for any arbitrary

~r0 within the volume bounded by it.
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But what is G?

The catch—what is G(~r,~r0)? Often this can be

produced by successive approximation based

on preliminary estimates, and partial data, but

the devil is in the details.

This is usually done interatively: estimate G

from known properties, model the medium based

on known inputs, compare results to inputs,

improve G.

Once you have a good estimate of G, you

know everything about wave propagation in

the medium.

This is known as an “inverse problem.”

8


