Laplace's equation, harmonic functions

D. Craig

2007-03-05

This introduction follows part of Ch 1. of Wyld, Mathematical Methods for Physics, 1976.

Heat conduction

Suppose we have heat flowing through a conductive medium. The flux of energy $\overrightarrow{\mathbf{F}}$ is related to the gradient of the temperature by the thermal conductivity:

$$
\begin{equation*}
\overrightarrow{\mathbf{F}}=-K(\nabla \mathrm{~T}) . \tag{1}
\end{equation*}
$$

Our medium has heat capacity (per mass) of c, and density ρ.

Consider a volume in the medium. The rate of change of the heat Q inside can be written two ways, as a volume integral of a partial in time, and as a flux integral across a surface:
$\frac{d Q}{d r}=\int_{V} c \rho \frac{\partial T}{\partial t} d V=-\oint_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{A}}$,
$=\oint_{S}(K \nabla \mathrm{~T}) \cdot \mathrm{d} \overrightarrow{\mathbf{A}}$,
$=\int_{V} \nabla \cdot(\mathrm{~K} \nabla \mathrm{~T}) \mathrm{d} V$ by Gauss's theore
(4)

This has to hold true for any volume V , so we can equate the integrands:

$$
\begin{equation*}
c \rho \frac{\partial T}{\partial t}=\nabla \cdot(K \nabla T) . \tag{5}
\end{equation*}
$$

If K is a constant,

$$
\begin{equation*}
\nabla \cdot(\nabla \mathrm{T})=\nabla^{2} \mathrm{~T}=\frac{1}{\mathrm{k}} \frac{\partial \mathrm{~T}}{\partial \mathrm{t}}, \tag{6}
\end{equation*}
$$

with $\mathrm{k}=\mathrm{K} / \mathrm{c} \rho$, and the operator

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \tag{7}
\end{equation*}
$$

is called the Laplacian.

The diffusion equation

The same procedure can be applied to diffusion of particles, if $\mathfrak{n}(\overrightarrow{\mathbf{r}}, \mathrm{t})$ is the concentration of particles per unit volume, the flux is

$$
\begin{equation*}
\overrightarrow{\mathbf{F}}=-\mathrm{C} \nabla \cdot \mathrm{n}, \tag{8}
\end{equation*}
$$

where C is a constant. The same sort of analysis as above leads to

$$
\begin{equation*}
\nabla^{2} n=\frac{1}{C} \frac{\partial n}{\partial t} \tag{9}
\end{equation*}
$$

If we consider either type of system in a steady state (no time dependence) we get

$$
\begin{equation*}
\nabla^{2} \mathrm{~T}=0 \text { or } \nabla^{2} \mathrm{n}=0, \tag{10}
\end{equation*}
$$

which are both examples of Laplace's equation, where

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}, \tag{11}
\end{equation*}
$$

and just drop the last term for 2-D problems. Remember that in 2-D the boundary is a curve, in 3-D, a surface.

Harmonic functions A harmonic function is a twice continuously differentiable function that satisfies Laplace's equation:

$$
\begin{equation*}
\nabla^{2} f=0, \tag{12}
\end{equation*}
$$

inside some boundary. You also sometimes see

$$
\Delta f=0,
$$

where Δ is used for ∇^{2}. Other classic physical examples are the electrical and gravitational (static) potentials outside of charges and masses, respectively.

Harmonic functions have the important property:

A function that satisfies $\nabla^{2}=0$ cannot have an extremum; the function can only have a maximum or minimum at the edge of the domain on which it is defined.

