Shortest distance: minimization of curvature

2007-03-02

Section 10.2

Near a minimum of a 1-D function, the function changes very little if we move a small ϵ away from the minimum-it is a stationary point.

Now we seek to find a stationary function, given certain conditions. In this case we are going to find the minimum distance (function) between two points. How can we "move" away from a function? Add a little variation function, and linearize with respect to it.

Problem a

$$
\begin{align*}
L[h] & =\int_{a}^{b} \sqrt{d x^{2}+d y^{2}} \tag{1}\\
& =\int_{a}^{b} \sqrt{d x^{2}+\left(\frac{d h}{d x}\right)^{2} d x^{2}} \tag{2}\\
& =\int_{a}^{b} \sqrt{1+\left(\frac{d h}{d x}\right)^{2}} d x \tag{3}\\
& =\int_{a}^{b} \sqrt{1+h_{x}^{2}} d x \tag{4}
\end{align*}
$$

$\mathrm{L}[\mathrm{h}]$ is a quantity that depends on the form of a function-a "functional."

When $\mathrm{L}[\mathrm{h}]$ is a minimum, it does not change to first order when $h(x)$ is perturbed. Add a function $\epsilon(x)$ to $h(x)$ which vanishes at the endpoints: $\epsilon(\mathfrak{a})=\epsilon(b)=0$.

Problem b:

Put in $h \rightarrow h+\epsilon$, and expand in a Taylor series. Write

$$
\frac{d}{d x}(h+\epsilon)=\frac{d h}{d x}+\frac{d \epsilon}{d x}=h_{x}+\epsilon_{\chi} .
$$

We want to get

$$
\begin{equation*}
\delta L[h]=\mathrm{L}[\mathrm{~h}+\epsilon]-\mathrm{L}[\mathrm{~h}] \tag{5}
\end{equation*}
$$

The variation of the integrand (see eq. 3.18) is

$$
\begin{equation*}
\delta\left[\sqrt{1+h_{x}^{2}}\right] \approx \epsilon_{x} \frac{d}{d h_{x}}\left(\sqrt{1+h_{x}^{2}}\right)=\frac{h_{x} \epsilon_{x}}{\sqrt{1+h_{x}^{2}}} . \tag{6}
\end{equation*}
$$

So the variation of the integral is

$$
\begin{equation*}
\delta L[h]=\int_{a}^{b} \frac{h_{x} \epsilon_{x}}{\sqrt{1+h_{x}^{2}}} d x \tag{7}
\end{equation*}
$$

Now your text makes the simplifying assumption that $h_{x} \ll 1$, so*

$$
\begin{equation*}
\delta L[h]=\int_{a}^{b} h_{x} \epsilon_{x} d x \tag{8}
\end{equation*}
$$

*This is just to simplify the algebra. The analysis can be continued with an uglier integral.

Problem c:

Integrate this by parts:

$$
\begin{equation*}
\int_{a}^{b} h_{x} \epsilon_{x} d x=\left.h_{x} \epsilon_{x}\right|_{a} ^{b}-\int_{a}^{b} \frac{d^{2} h}{d x^{2}} \epsilon d x \tag{9}
\end{equation*}
$$

Using $\epsilon(a)=\epsilon(b)=0$ this is

$$
\begin{equation*}
\delta L[h]=-\int_{a}^{b} \frac{d^{2} h}{d x^{2}} \epsilon(x) d x \tag{10}
\end{equation*}
$$

This must vanish for any $\epsilon(x)$ if $L[h]$ is stationary. So

$$
\begin{equation*}
\frac{d^{2} h}{d x^{2}}=0 \tag{11}
\end{equation*}
$$

which means the curvature vanishes, hence a straight line is the shortest distance between two points.

This procedure is not just beating the obvious to death. Notice that we used

$$
d r=\sqrt{d x^{2}+d y^{2}}
$$

to define the our little increment of line length. This is a distance function or metric.

If we were trying to find the minimum distance on a sphere in 2-D, or some other curved space, we could use a different distance function and follow the same procedure to find stationary paths.

This idea is very important in the geometry of curved spaces, including General Relativity.

