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The variational analysis of section 10.2 can be

extended to to a 2–D soap film, as in section

10.3, most of which we’ll leave for homework.

For 1–D we had

δL[h] = −

∫b

a

d2h

dx2
ε(x) dx, (1)

which vanishes for any ε(x) if L[h] is stationary.

For a surface:

δS[h] = −

∫ ∫
ε(x, y)∇2h(x, y) dxdy, (2)

where h is the “height” of the surface in Carte-

sian coordinates, and this variation must van-

ish for any ε(x, y) that is zero at the boundary.

In both cases this means the other term in the

integrand (involving h) must vanish as well.
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For the stationary arclength, we found no cur-

vature:

d2h

dx2
= 0, (3)

which implies h(x) is a straight line.

For the stationary surface area we find

∇2h(x, y) =
∂2h

∂x2
+

∂2h

∂y2
= 0. (4)

This does not require a flat surface, because

a positive curvature in say the x-direction, can

be canceled by a negative curvature in the y-

direction (or many other possibilities).
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For example suppose

h(x, y) = x2 − y2, (5)

(prob 10.3h) it is easy to see that ∇2h = 0 in

this case, which is a “saddle-shaped” surface.

Now think about a stationary point:

∂h

∂x
= 0,

∂h

∂y
= 0. (6)

This can’t be a minimum or maximum because

∇2h = 0 implies that if it is a minimum in one

direction, it must be a maximum in a perpen-

dicular direction, or equivalently that ∂2h
∂x2 and

∂2h
∂y2 cannot have the same sign.

3



So, a function that satisfies ∇2h = 0 can only

have a maximum or minimum at the edge of

the domain on which it is defined. (p. 124)
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Averaging integrals (10.8)

Laplace equation in polar coordinates:

1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂φ2
= 0. (7)

Integrate over a circle of radius R:∫∫
S
g(r, φ)dA =

∫R

0

∫2π

0
g(r, φ)rdφdr (8)

This gives∫R

0

∫2π

0

[
∂

∂r

(
r
∂f

∂r

)
+

1

r

∂2f

∂φ2

]
dφdr = 0. (9)

The last term in integrand will be the same

at 0, 2π in the definite integral, so it makes no

contribution:∫R

0

∫2π

0

[
∂

∂r

(
r
∂f

∂r

)]
dφdr = 0. (10)
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This can be written:∫R

0

 ∂

∂r

r
∂

∂r

∫2π

0
fdφ

dr = 0. (11)

Define

f̄(r) ≡
1

2π

∫2π

0
f(r, φ)dφ. (12)

So ∫R

0

[
∂

∂r

(
r
∂f̄

∂r

)]
dr = 0, (13)

[
r
∂f̄

∂r

]r=R

r=0

= 0. (14)

This holds for any R, so it’s a constant:

r
∂f̄

∂r
= C, (15)
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which integrates to

f̄(r) = C ln(r) + A (16)

but we can’t have an infinity, f̄ is finite as r → 0,

so C = 0 and f(r = 0) = f̄ = A, so

f(r = 0) =
1

2π

∫2π

0
f(r, φ)dφ. (17)

The value of the harmonic function f at the

origin is given by the average over a circle of

any radius centered on the origin. Since the

origin is just a point, this holds true for any

point: average on a circle around it and get

the value at the center.

This puts strong constraints on the behavior

of the function, and since harmonic functions

are so common in physics through ∇2f = 0 this

gives many nice properties to lots of functions

of physical interest.
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