Some residue integration examples

D. Craig
2007-03-24

Here are a couple of examples of contour integration using residues and a contour in the upper half-plane. They are exercises from Complex variables, harmonic and analytic functions, by Francis J. Flanigan.

1 First example

Integrate

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{d x}{x^{2}+x+1} \tag{1}
\end{equation*}
$$

Use the complex function

$$
\begin{equation*}
f(z)=\frac{1}{z^{2}+z+1} \tag{2}
\end{equation*}
$$

We will use a contour that goes from $-R$ to R on the real axis, and then close it with a semicircular contour in the upper half of the complex plane, so $C=$ $C_{\text {real }}+C_{R}$. We let $R \rightarrow \infty$ to get the whole real axis.

First we have to make sure that along the semicircular C_{R}, the contribution of the integral vanishes. We use Flanigan's "lemma" which is that the integral over C_{R} vanishes if

$$
\lim _{\mathrm{R}=|z| \rightarrow \infty} z \mathrm{f}(z)=0
$$

So consider

$$
\begin{equation*}
\lim _{\mathrm{R}=|z| \rightarrow \infty} \frac{z}{z^{2}+z+1}=\lim _{|z| \rightarrow \infty} \frac{1}{z+1+1 / z}=0 \tag{3}
\end{equation*}
$$

which satisfies the lemma. ${ }^{1}$ So the integral along the real axis will be given by the residue of the pole in the upper half-plane.

The denominator of $f(z)$ has roots at

$$
z=\frac{-1 \pm i \sqrt{3}}{2}
$$

[^0]So

$$
\begin{equation*}
f(z)=\frac{1}{\left[z-\frac{1}{2}(-1-i \sqrt{3})\right]\left[z-\frac{1}{2}(-1+i \sqrt{3})\right]}, \tag{4}
\end{equation*}
$$

call $z_{0}=\frac{1}{2}(-1+i \sqrt{3})$, this is the location of the pole in the upper half-plane, which will be enclosed by the contour. The pole is simple so we can find the residue using

$$
\begin{equation*}
\operatorname{Res}\left(f, z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z) \tag{5}
\end{equation*}
$$

The residue is

$$
\begin{align*}
\operatorname{Res}\left(f, z_{0}\right) & =\lim _{z \rightarrow z_{0}} \frac{\left(z-z_{0}\right)}{\left[z-\frac{1}{2}(-1-i \sqrt{3})\right]\left(z-z_{0}\right)} \tag{6}\\
& =\left[\frac{1}{2}(-1+i \sqrt{3}+1+i \sqrt{3})\right]^{-1} \tag{7}\\
& =\frac{1}{i \sqrt{3}} \tag{8}
\end{align*}
$$

So

$$
\begin{align*}
\int_{C} f(z) d z & =\int_{-\infty}^{\infty} \frac{d x}{x^{2}+x+1} \tag{9}\\
& =2 \pi i \operatorname{Res}\left(f, z_{0}\right) \tag{10}\\
& =2 \pi i\left(\frac{1}{i \sqrt{3}}\right) \tag{11}\\
& =\frac{2 \pi}{\sqrt{3}} \tag{12}
\end{align*}
$$

2 Slightly more complicated example.

Integrate

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x-2^{1 / 3}}{x^{3}-2} d x \tag{13}
\end{equation*}
$$

where $2^{1 / 3}$ is the real cube root of 2 . (Remember there are nth roots of a number, some of which are complex.)

We are going to use the same contour as before. First, check that the integral will vanish along C_{R} :

$$
\begin{align*}
\lim _{|z| \rightarrow \infty} z f(z) & =\lim _{|z| \rightarrow \infty} \frac{z\left(z-2^{1 / 3}\right)}{z^{3}-2} \tag{14}\\
& =\lim _{|z| \rightarrow \infty}\left[\frac{z^{2}}{z^{3}-2}-\frac{2^{1 / 3} z}{z^{3}-2}\right]=0 \tag{15}
\end{align*}
$$

so we don't have to worry about C_{R}. Now what are the poles of

$$
\begin{equation*}
f(z)=\frac{\left(z-2^{1 / 3}\right)}{z^{3}-2} ? \tag{16}
\end{equation*}
$$

They will be the zeros of $z^{3}-2$, i. e. the three cube roots of 2 , which are

$$
2^{1 / 3}, 2^{1 / 3} e^{i 2 \pi / 3}, 2^{1 / 3} e^{i 4 \pi / 3}
$$

The numerator of $f(z)$ will eliminate the first, which is on the real axis. The second will be in the upper half-plane, so it is inside C, the last is in the lower half-plane. ${ }^{2}$

Now follow the procedure:

$$
\begin{align*}
f(z) & =\frac{\left(z-2^{1 / 3}\right)}{\left(z-2^{1 / 3}\right)\left(z-2^{1 / 3} e^{i 2 \pi / 3}\right)\left(z-2^{1 / 3} e^{i 4 \pi / 3}\right)} \tag{17}\\
& =\frac{1}{\left(z-2^{1 / 3} e^{i 2 \pi / 3}\right)\left(z-2^{1 / 3} e^{i 4 \pi / 3}\right)} \tag{18}
\end{align*}
$$

Our enclosed pole is at $z_{0}=2^{1 / 3} e^{i 2 \pi / 3}$, so we can get

$$
\begin{align*}
\operatorname{Res}\left(f, z_{0}\right) & =\lim _{z \rightarrow z_{0}} \frac{z-z_{0}}{\left(z-z_{0}\right)\left(z-2^{1 / 3} e^{i 4 \pi / 3}\right)} \tag{19}\\
& =\lim _{z \rightarrow z_{0}} \frac{1}{\left(z-2^{1 / 3} e^{i 4 \pi / 3}\right)} \tag{20}\\
& =\left[2^{1 / 3}\left(e^{i 2 \pi / 3}-e^{i 4 \pi / 3}\right)\right]^{-1} \tag{21}
\end{align*}
$$

working out the real and imaginary parts of the exponentials, get

$$
\begin{equation*}
\operatorname{Res}\left(f, z_{0}\right)=\frac{1}{2^{1 / 3} 3^{1 / 2}} \tag{22}
\end{equation*}
$$

Now we put this all together and

$$
\begin{align*}
\int_{-\infty}^{\infty} \frac{x-2^{1 / 3}}{x^{3}-2} d x & =2 \pi i \operatorname{Res}\left(f, z_{0}\right) \tag{23}\\
& =\frac{2 \pi}{2^{1 / 3} 3^{1 / 2}} \tag{24}
\end{align*}
$$

This looks like it would be very difficult to obtain using real variable methods.

[^1]
[^0]: ${ }^{1}$ This is based on the ML-inequality or "estimation lemma", see Wikipedia, etc.

[^1]: ${ }^{2}$ If this is confusing, review the properties of complex roots. In any case, it is a good idea to sketch a diagram of the root locations.

