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Here are a couple of examples of contour integration using residues and a

contour in the upper half-plane. They are exercises from Complex variables,

harmonic and analytic functions, by Francis J. Flanigan.

1 First example

Integrate ∫∞
−∞

dx

x2 + x + 1
. (1)

Use the complex function

f(z) =
1

z2 + z + 1
. (2)

We will use a contour that goes from −R to R on the real axis, and then close

it with a semicircular contour in the upper half of the complex plane, so C =

Creal + CR. We let R → ∞ to get the whole real axis.

First we have to make sure that along the semicircular CR, the contribution

of the integral vanishes. We use Flanigan's \lemma" which is that the integral

over CR vanishes if

lim
R=|z|→∞ zf(z) = 0.

So consider

lim
R=|z|→∞

z

z2 + z + 1
= lim

|z|→∞
1

z + 1 + 1/z
= 0, (3)

which satis�es the lemma.1 So the integral along the real axis will be given by

the residue of the pole in the upper half-plane.

The denominator of f(z) has roots at

z =
−1± i

√
3

2

1This is based on the ML-inequality or \estimation lemma", see Wikipedia, etc.
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So

f(z) =
1

[z − 1
2 (−1 − i

√
3)][z − 1

2 (−1 + i
√

3)]
, (4)

call z0 = 1
2 (−1 + i

√
3), this is the location of the pole in the upper half-plane,

which will be enclosed by the contour. The pole is simple so we can �nd the

residue using

Res(f, z0) = lim
z→z0

(z − z0)f(z). (5)

The residue is

Res(f, z0) = lim
z→z0

(z − z0)

[z − 1
2 (−1 − i

√
3)](z − z0)

(6)

=

[
1

2
(−1 + i

√
3 + 1 + i

√
3)

]−1

(7)

=
1

i
√

3
(8)

So ∫
C

f(z)dz =

∫∞
−∞

dx

x2 + x + 1
, (9)

= 2πiRes(f, z0), (10)

= 2πi

(
1

i
√

3

)
, (11)

=
2π√

3
. (12)

2 Slightly more complicated example.

Integrate ∫∞
−∞

x − 21/3

x3 − 2
dx, (13)

where 21/3 is the real cube root of 2. (Remember there are n nth roots of a

number, some of which are complex.)

We are going to use the same contour as before. First, check that the integral

will vanish along CR:

lim
|z|→∞ zf(z) = lim

|z|→∞
z(z − 21/3)

z3 − 2
(14)

= lim
|z|→∞

[
z2

z3 − 2
−

21/3z

z3 − 2

]
= 0, (15)
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so we don't have to worry about CR. Now what are the poles of

f(z) =
(z − 21/3)

z3 − 2
? (16)

They will be the zeros of z3 − 2, i. e. the three cube roots of 2, which are

21/3, 21/3ei2π/3, 21/3ei4π/3.

The numerator of f(z) will eliminate the �rst, which is on the real axis. The

second will be in the upper half-plane, so it is inside C, the last is in the lower

half-plane.2

Now follow the procedure:

f(z) =
(z − 21/3)

(z − 21/3)(z − 21/3ei2π/3)(z − 21/3ei4π/3)
(17)

=
1

(z − 21/3ei2π/3)(z − 21/3ei4π/3)
. (18)

Our enclosed pole is at z0 = 21/3ei2π/3, so we can get

Res(f, z0) = lim
z→z0

z − z0

(z − z0)(z − 21/3ei4π/3)
, (19)

= lim
z→z0

1

(z − 21/3ei4π/3)
, (20)

=
[
21/3(ei2π/3 − ei4π/3)

]−1

(21)

working out the real and imaginary parts of the exponentials, get

Res(f, z0) =
1

21/331/2i
. (22)

Now we put this all together and∫∞
−∞

x − 21/3

x3 − 2
dx = 2πiRes(f, z0), (23)

=
2π

21/331/2
. (24)

This looks like it would be very di�cult to obtain using real variable methods.

2If this is confusing, review the properties of complex roots. In any case, it is a good idea

to sketch a diagram of the root locations.
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