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Chapter 1

Basics

1.1 Goniometric functions

For the goniometric ratios for a point p on the unit circle holds:

cos(¢p) =xp , sin(g) =y, , tan(¢) = ki

sin?(z) 4 cos?(z) = 1 and cos—2(z) = 1 + tan?(z).
cos(a £ b) = cos(a) cos(b) Fsin(a) sin(b) , sin(a +b) = sin(a) cos(b) % cos(a) sin(b)

tan(a) & tan(b)

tan(a £0) = 1 F tan(a) tan(b)

The sum formulas are:

sin(p) +sin(q) = 2sin(5(p +q)) cos(z(p — q))

sin(p) —sin(g) = 2cos(z(p+q))sin(z(p — q))

cos(p) +cos(q) = 2cos(5(p+q))cos(3(p — q))

cos(p) — cos(q) = —2sin(z(p+ q))sin(z(p - q))

From these equations can be derived that
2cos?(z) = 14+cos(2z) , 2sin®(z) =1 — cos(2z)

sin(r — ) =sin(z) ,  cos(m —x) = — cos(x)

sin(37 —z) =cos(z) , cos(3m—x) = sin(z)

Conclusions from equalities:
sin(z) =sin(a) = w=ax2kmorz=(m—a)*2kn, ke IN
cos(x) =cos(a) = wx=ax2kmorx=—a+2kn

tan(z) =tan(a) = ax=axkmandx # g + kw

The following relations exist between the inverse goniometric functions:

T 1
arctan(x) = arcsin (| —— | = arccos | —= ] , sin(arccos(z)) = /1 — 22
@) (o) (o) sinarccos(o)) = v

1.2 Hyperbolic functions

The hyperbolic functions are defined by:

T _ T T —x inh
sinh(z) = ¢ 2e , cosh(z) = ¢ +26 , tanh(z) = Z:;h((?)

From this follows that cosh?(z) — sinh?(z) = 1. Further holds:

arsinh(z) = In |z + Va2 + 1| , arcosh(x) = arsinh(y/ 22 — 1)
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1.3 Calculus

The derivative of a function is defined as:

af = lim

dr  h—0

Derivatives obey the following algebraic rules:

For the derivative of the inverse function ™V (y), defined by "V (f(z)) = z, holds at point P =

Chain rule: if f = f(g(x)), then holds

dlz ty)=dx+dy , d(ay) =2xdy+ ydx , d(f) =

f (@)

fla+h) - f(a

2

) )

(L) | ($)
dy P dz ) p

df _ df dg

dr dg dx

Further, for the derivatives of products of functions holds:

For the primitive function F'(z) holds: F'(z) =

The curvature p of a curve is given by: p =

The theorem of De ’I Hopital: if f(a) = 0and g(a) = 0, thenis lim ——= = lim

-2 ()

>nk)<

ydx — xdy

y=1f@) | dy/de=f'(2) [ f(@)da
ax™ anz™ 1 a(n + 1)~ tpntl
1/x —r2 In |x|
a 0 ax
a;” a® h;(a) a®/ lil(a)
*log(x) (rIn(a))~! (zIn(z) — z)/In(a)
In(x) 1/x xln(z) —x
sin(z) cos(z) —cos(x)
cos(x) — sin(z) sin(x)
tan(z cos™*(x) —In| cos(z)]
sin™!(x) — sin?(x) cos(x) In | tan(3z)|
sinh(z) cosh(x) cosh(z)
cosh(z) sinh(z) sinh(z)
arcsin(z) 1/v/1 — a2 xarcsin(z) + V1 — 22
arccos(x) —1/v1 — a2 xarccos(z) — V1 — a?
arctan(z) (1+22)71t zarctan(z) — 1 In(1 + 2?)
(a+2%)~V2 | —x(a+2?)3/? In |z + Va + 22|
(a? —2?)~t 2z(a? + 2%)7?2 %1n|(a+az)/(a—x)|

(1L+(@)*)*?

ly”|

f'(x)
a—a g'(x)

f(x)

z—a g(z)

(z, f()):

f(x). An overview of derivatives and primitives is:
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1.4 Limits
i T —1 t z
i S i g i @ e —e , lim (1+9) —en
z—0 x x—0 xT x—0 x k—0 T—00 T
In? 1 P
limz®In(z) =0, lim n'(z) =0, lim In(z +a) =a , lim T 0 als la| > 1.
x|0 rz—oo % z—0 T z—o00 a®
lin}J (al/JE — 1) = 1In(a) , li%m =1, lim Jz=1
T— r— €T T—00

1.5 Complex numbersand quaternions

151 Complex numbers

The complex number z = a + bi with a and b € IR. a is the real part, b the imaginary part of z. |z| = Va2 + b2.
By definition holds: i2 = —1. Every complex number can be written as z = |z| exp(ip), with tan(¢) = b/a. The
complex conjugate of z is defined as z = z* := a — bi. Further holds:

(a+bi)(c+di) = (ac—bd)+i(ad+ be)
(a+bi)+ (c+di) = a+c+i(b+d)
a+bi  (ac+bd) +i(bc— ad)
c+di 2+ d?

Goniometric functions can be written as complex exponents:

1 .
sin(xz) = ?(e”—e_”)
i

1 . ,
cos(z) = §(e”+e7”)

From this follows that cos(iz) = cosh(x) and sin(iz) = i sinh(x). Further follows from this that
et = cos(x) £ isin(x), S0 e # 0Vz. Also the theorem of De Moivre follows from this:

(cos(p) + isin(p))™ = cos(np) + isin(nep).

Products and quotients of complex numbers can be written as:

z1-22 = |z |22(cos(pr + p2) + isin(er + ¢2))
z z
2 B cos(er - o) + isin(pr - 92))
z9 |2’2|

The following can be derived:
|21 + 22| < |21 + |22] , [21 — 22| = [ |21] = |22 |

And from z = rexp(if) follows: In(z) = In(r) + 46, In(z) = In(z) * 2nmri.

1.5.2 Quaternions

Quaternions are defined as: z = a + bi + ¢j + dk, with a,b,c,d € IR and i? = j2 = k? = —1. The products of
i, j, k with each other are given by ij = —ji = k, jk = —kj =i and ki = —ik = j.
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1.6 Geometry

1.6.1 Triangles

The sine rule is:
a b c

sin(a)  sin(f)  sin(y)

Here, « is the angle opposite to a, 3 is opposite to b and v opposite to c. The cosine rule is: a? = b?+c2—2bc cos(av).
For each triangle holds: o + 6 + v = 180°.

Further holds:
tan(s(a+pB))  a+b

(a—p) a=b

NIEINIES

tan(

The surface of a triangle is given by Jabsin(v) = Sah, = v/s(s — a)(s — b)(s — ¢) with h, the perpendicular on
aands=1(a+b+c).

1.6.2 Curves

Cycloid: if a circle with radius « rolls along a straight line, the trajectory of a point on this circle has the following
parameter equation:

x=a(t+sin(t)) , y=a(l+ cos(t))

Epicycloid: if a small circle with radius a rolls along a big circle with radius R, the trajectory of a point on the small
circle has the following parameter equation:

x = asin <$t> + (R+a)sin(t) , y=acos (?t) + (R + a) cos(t)

Hypocycloid: if a small circle with radius « rolls inside a big circle with radius R, the trajectory of a point on the
small circle has the following parameter equation:

a a

z = asin (R_at) +(R—a)sin(t) , y=—acos (R_at) + (R — a) cos(t)

A hypocycloid with @ = R is called a cardioid. It has the following parameterequation in polar coordinates:
r = 2a[l — cos(p)].

1.7 Vectors

The inner product is defined by: @ - b= " a;b; = || - [b| cos(¢)

where ¢ is the angle between @ and b. The external product is in IR3 defined by:

ayb, —a.b, €x €y €
axb= aby — azb, =|a; ay a,
azby, — ayb, b, by b,

Further holds: |@ x b| = |@| - |b|sin(y), and @ x (b x &) = (@ - &)b— (@ b)z.
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1.8 Series
1.8.1 Expansion

The Binomium of Newton is:

(a+b)" i() a™kp*

k=0

where (") == _nt
k) Kln— k)
By subtracting the series >~ 7* and » 3~ r* one finds:
k=0 k=0
~ 1 —pntl
k
2=

=0

. T 1
and for |r| < 1 this gives the geometric series: Z k= .
1—7r
k=0
N
The arithmetic series is given by: Z(a +nV)=a(N+1)+ sN(N +1)V.
n=0

The expansion of a function around the point « is given by the Taylor series:

x—a)? r—a)”
F@) = F@) + @ - a)f'a) + E L ) o O o0 ) 4 R
where the remainder is given by:
nh’n n
Ry (h) = (1= 0)"— f"*1)(0h)
and is subject to:
n+1 n+1
mh < R (h) < Mh
(n+1)! (n+1)
From this one can deduce that -
Q
1 _ « — n
(== (2)
One can derive that:
4 90’ "6 O4R
n= 1 n=1 n n=1 n 945
n 00 n+1 2 o n+1
2_ 1 ™ (-~
Yk =in(n+1)(2n+1) Z e ZT_IH(Q)
k=1 n=1 n=1
s 1 L o o 4 n+1 7.‘_3
nzlzm? T2 gzn—l — 2n—1 ;271—1 D)

1.8.2 Convergence and divergence of series

If Z |u,, | converges, Z uy, also converges.

If lim wu, # 0then Zun is divergent.

n—oo

An alternating series of which the absolute values of the terms drop monotonously to 0 is convergent (Leibniz).
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If fp°° f(z)dz < oo, then 3 £, is convergent.

If u,, > 0Vnthenis > u, convergentif > In(u, + 1) is convergent.

n

. L 1
If u,, = ¢,,z™ the radius of convergence p of > w,, is given by: —
) p

=1 . : :
The series Z — i convergent if p > 1 and divergentif p < 1.
n

n=1

n

n

= lim {/|¢y| = lim
n—oo n—oo

Cn+1
Cpn, '

If: lim 22 — p, than the following is true: if p > 0 than Zun and Z vy, are both divergent or both convergent, if

n—00 Uy,

= 0 holds: if Z vy, 1S convergent, than Z u,, 1S also convergent

If L is defined by: L = lim /], orby: L = lim ’“"“

L<1.

n

1.8.3 Convergence and divergence of functions

, then'is >" u,, divergentif L > 1 and convergent if

f(z) is continuous in « = a only if the upper - and lower limit are equal: li%n flz) = hfn f(z). This is written as:

fla™) = fla®).

If f(z) is continuous in a and: li%n fl(z) = lifn f'(z), than f(x) is differentiable in x = a.

We define: || f|lw := sup(|f(z)| |z € W), and lim f,(xz) = f(x). Than holds: {f,} is uniform convergent if

lim || f, —
n—oo

fll=0,0r: V(e > 0)3(N

WV(n = Nl fn—

fll <e.

Weierstrass’ test: if > ||u,||w is convergent, than > u,, is uniform convergent.

We define S(z Z

x) and F(y

/f x,y)dx := F. Than it can be proved that:

| Theorem | For

| Demands on W

| Than holds on W

rows fr continuous, £ is continuous
{f»} uniform convergent
C series S(z) uniform convergent, S'is continuous
u,, continuous
integral | f is continuous Fis continuous
rows fn can be integrated, fn can be integrated,
{fn} uniform convergent [ f(x)dz = lim [ fodx
I series | S(x) is uniform convergent, S can be integrated, [ Sdz =) [ undx
uy, can be integrated
integral | f is continuous [ Fdy = [ f(z,y)dzdy
rows {fn} €CY {f.} unifconv — ¢ | f' = ¢(x)
D series | u, €C71; >, conv; Y ul, u.c. S'(x) =Y ul(z)
integral | 0f/dy continuous Fy = [ fy(z,y)dx
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1.9 Productsand quotients

For a,b, c,d € IR holds:

The distributive property: (a + b)(c + d) = ac + ad + bc + bd

The associative property: a(bc) = b(ac) = c¢(ab) and a(b+ ¢) = ab+ ac
The commutative property: a + b = b + a, ab = ba.

Further holds:

2n _ b2n a2n+1 _ b2n+1

a _ 2n—1 2n—2 2n—3;2 | 2n—1 _ - 2n—k 2k
Ty =a +a b+a b*+---%b , pa— Ezoa b
3:|:b3
(a+b)(a®>£ab+b*) =a®>+b®, (a+b)(a—0b)=a®+b*, a = = a® F ba + b*
a

1.10 Logarithms

Definition: @log(x) = b < a® = 2. For logarithms with base e one writes In(x).

Rules: log(z™) = nlog(z), log(a) 4 log(b) = log(ab), log(a) — log(b) = log(a/b).

1.11 Polynomials

Equations of the type

have n roots which may be equal to each other. Each polynomial p(z) of order n > 1 has at least one root in €. If
all ax, € IR holds: when 2z = p with p € € a root, than p* is also a root. Polynomials up to and including order 4
have a general analytical solution, for polynomials with order > 5 there does not exist a general analytical solution.

Fora,b,c € IR and a # 0 holds: the 2nd order equation ax? + bx + ¢ = 0 has the general solution:

o —b+ Vb?% — dac
B 2a

For a,b,c,d € IR and a # 0 holds: the 3rd order equation az® + bz? + cx + d = 0 has the general analytical
solution:

3ac — b2 b
f— K— _—
i 922K 3a
K 3ac—b? b V3 3ac — b?
p— * p— _—— _— ) K
T2 > P ReK 3a 2 ( T ek )

1/3
9abc — 27da® — 263 /3V4ac® — 20?2 — 18abed + 27a2d? + 4db3 /
54a3 18a2

with K = (

1.12 Primes

A prime is a number € IN that can only be divided by itself and 1. There are an infinite number of primes. Proof:

suppose that the collection of primes P would be finite, than construct the number ¢ = 1 + ][] p, than holds
peP

g = 1(p) and so @ cannot be written as a product of primes from P. This is a contradiction.
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If 7(z) is the number of primes < z, than holds:

L . CO B
M 2 n(a) T
n(t
2

For each NV > 2 there is a prime between N and 2V.
The numbers F, := 2* + 1 with k& € IN are called Fermat numbers. Many Fermat numbers are prime.

The numbers M), := 2* — 1 are called Mersenne numbers. They occur when one searches for perfect numbers,
which are numbers n € IN which are the sum of their different dividers, for example 6 = 1 4+ 2 4+ 3. There
are 23 Mersenne numbers for k < 12000 which are prime: for & € {2,3,5,7,13,17,19, 31,61, 89,107,127, 521,
607,1279,2203, 2281, 3217,4253, 4423, 9689, 9941, 11213}

To check if a given number n is prime one can use a sieve method. The first known sieve method was developed by
Eratosthenes. A faster method for large numbers are the 4 Fermat tests, who don’t prove that a number is prime but
give a large probability.

1. Take the first 4 primes: b = {2,3,5, 7},
2. Take w(b) = b"~! mod n, for each b,

3. If w = 1 for each b, then n is probably prime. For each other value of w, n is certainly not prime.




Chapter 2

Probability and statistics

2.1 Combinations

The number of possible combinations of & elements from n elements is given by

(1) = mom

The number of permutations of p from n is given by

i =7(;)

The number of different ways to classify n; elements in 4 groups, when the total number of elements is IV, is

N!

2.2 Probability theory

The probability P(A) that an event A occurs is defined by:

n(4)
P(A) = —=
where n(A) is the number of events when A occurs and »(U) the total number of events.

The probability P(—A) that A does not occur is: P(-A) = 1 — P(A). The probability P(A U B) that A and
B both occur is given by: P(AU B) = P(A) + P(B) — P(AnN B). If A and B are independent, than holds:
P(ANB)=P(A)-P(B).

The probability P(A|B) that A occurs, given the fact that B occurs, is:

P(A|B) = 13(1’34(7;)3)

2.3 Statistics
2.3.1 General

The average or mean value (z) of a collection of values is: (z) = >, z;/n. The standard deviation o, in the
distribution of x is given by:

Oy =
n

When samples are being used the sample variance s is given by s = Llch.
n—



10

Mathematics Formulary by ir. J.C.A. Wevers

The covariance o, of  and y is given by::

o

(@i — (@) (yi = ()

n—1

=1

Ogy =

The correlation coefficient r,,, of = and y than becomes: ., = 04y /050y.

The standard deviation in a variable f(z,y) resulting from errorsin z and y is:

af \*> . (of \° ofof
U?(m,y) = <%UI> + (8_yay) + %a_yawy

2.3.2 Distributions

1. The Binomial distribution is the distribution describing a sampe with replacement. The probability for

success is p. The probability P for k successes in n trials is than given by:
Ple == () )t

The standard deviation is given by o, = \/np(1 — p) and the expectation value is ¢ = np.

. The Hypergeometric distribution is the distribution describing a sampeling without replacement in which

the order is irrelevant. The probability for k successes in a trial with A possible successes and B possible

failures is then given by:
(A> < ’ )
k)\n—k
P=h="71vB\

The expectation value is given by e = nA/(A + B).

. The Poisson distribution is a limiting case of the binomial distribution when p — 0, n — oo and also

np = A is constant.
Ae~A

z!

P(x)

This distribution is normalized to Z P(z) =1.

=0

. The Normal distribution is a limiting case of the binomial distribution for continuous variables:

Pla) = - 127T exp (_% <:c —0<z>>2>

P(m):bia if a<z<b

P(z) =0 inall other cases

(b—a?

(z) = 1(b—a)and o” = D
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6. The Gamma distribution is given by:

{ P xa—le—z/ﬁ £ 0<y<
T T Rree

with o > 0 and 8 > 0. The distribution has the following properties: (z) = af3, 0% = o3>

7. The Beta distribution is given by:
if 0<zx<1

P(z) =0 everywhere else

IeY o2 — af
a+ 3’ (a+B)2(a+8+1)

and has the following properties: (z) =

For P(x?) holds: o = V/2 and 3 = 2.
8. The Weibull distribution is given by:

P(;c):—x“_le_ma if 0<z<ocoAaAB>0

g

P(z) =0 inall other cases
The average is (z) = /T ((a + 1))

9. For a two-dimensional distribution holds:
Pl(xl) = /P(Cﬂl,,fg)d(l?g 5 Pg(mg) = /P(CCl,,Tg)dl'l

with

e(g(z1,22)) = //g(ml,xg)P(xl,xg)dmldxg = Z Zg -P

r1 X2

2.4 Regression analyses

When there exists a relation between the quantities = and y of the form y = ax + b and there is a measured set z;
with related y;, the following relation holds for @ and b with & = (21,22, ...,z,) and €= (1,1, ..., 1):
J—al —bee< & é>"t

From this follows that the inner products are 0:

with (2,7) = Y. 22, (Z,7) = > wys, (F,€) = > z; and (€,¢€) = n. a and b follow from this.
A similar method works for higher order polynomial fits: for a second order fit holds:

- 3 - 1

¥ —ax? —bf —ce€ €< 22,7, ¢€ >

with 22 = (22,...,22).

ey by

The correlation coefficient r is a measure for the quality of a fit. In case of linear regression it is given by:

_ ny xy— 3y
V(Y a? = ()2 y - (Cv)?)




Chapter 3

Calculus

3.1 Integrals

3.1.1 Arithmeticrules

The primitive function F'(x) of f(x) obeys the rule F'(x) = f(z). With F(z) the primitive of f(z) holds for the
definite integral

If u = f(z) holds:

b f(b)
/ o(f (@)df (z) = / g(u)du
a f(a)

Partial integration: with F" and G the primitives of f and ¢ holds:

[ 10 sterta = s - [ 6oL a

A derivative can be brought under the intergral sign (see section 1.8.3 for the required conditions):

z=h(y) z=h(y)

d _ 0f (x,y) dg(y) dh(y)
T ] taan) = [ 2 o). G + fh). ) G

z=g(y) z=g(y)

3.1.2 Arclengts, surfaces and volumes
The arc length ¢ of a curve y(x) is given by:

The arc length ¢ of a parameter curve F'(Z

with
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The volume V of a solid of revolution is:

V= W/fQ(x)dx

3.1.3 Separation of quotients

Every rational function P(x)/Q(x) where P and @ are polynomials can be written as a linear combination of
functions of the type (z — a)* with k € Z, and of functions of the type

pr+q
((r = a)? + 02
withb > 0and n € IN. So:

pe)__5n A p() S A+
(

pmaf (@b r ) e (@b A

k=1
Recurrent relation: for n. # 0 holds:

k=1

/ dx 1 x n 2n—1 / dz
(22 + 1)ntt  2p (22 + 1)" 2n (x2+1)»

3.1.4 Special functions
Elliptic functions
Elliptic functions can be written as a power series as follows:

(2n — )N
< (2n)!(2n — 1)

1—k2sin®(z) =1 —

n=

k%" sin®" (z)

with n!! = n(n — 2)IL.

The Gamma function

The gamma function T'(y) is defined by:

o0

I'(y) = /e_mxy_ldm
0
One can derive that T'(y + 1) = yI'(y) = y!. This is a way to define faculties for non-integers. Further one can
derive that

oo

L(n+1)= g@n — 1)l and T (y) = /e_mxy_l In" (z)dx
0

The Beta function

The betafunction 3(p, q) is defined by:
1
Blpq) = [ar (1= 2) o
0
with p and ¢ > 0. The beta and gamma functions are related by the following equation:
T(p)T(q)
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The Delta function

The delta function 6(x) is an infinitely thin peak function with surface 1. It can be defined by:

. ) 0 for|z| >e¢
o(x) = ;13%) P(e,z) with P(e,z) =q 1 when |z] < ¢
2¢e
Some properties are:
/ O(z)de =1, / F(z)é(z)dx = F(0)

3.1.5 Goniometricintegrals

When solving goniometric integrals it can be useful to change variables. The following holds if one defines
tan(3z) := t:

2dt 1—t2 2t
=T e cos(x) = TIe sin(z) = T

Each integral of the type [ R(z,vaxz? + bz + ¢)dz can be converted into one of the types that were treated in
section 3.1.3. After this conversion one can substitute in the integrals of the type:

d
/R(z,\/:c2+1)dz : x=tan(p),dr = Y of Valtl=t4a

cos()

/R(z, V1—22)de : x=sin(p),dr =cos(p)dp of V1—22=1—1tz
/R(az, vaz—=1)dz : =xz= ! ,dx = sm(gp))d(p of vVaz—1=a—t

cos(p) cos?(yp

dx

These definite integrals are easily solved:

/2

/ cos™(z) sin™ (z)dzx =

0

(n—DN(m — D! 7/2 when m and n are both even
(m+n)!l 1 inall other cases

Some important integrals are:

70 xdr 2 /OO z2dzx B 2 70 x3dx B 7
ew +1  12a2 ’ (e+1)2 3 7 Jer+1 15
0 —o0 0

3.2 Functionswith morevariables

3.2.1 Derivatives

The partial derivative with respect to  of a function f(z, y) is defined by:

<5f> — lim f(xo + h,yo) = f(xo, o)

h—0 h

ox

The directional derivative in the direction of « is defined by:

a_f — lim f(‘rO + T’COS(OZ),ZJ() + T’SiH(O[)) B f(x()ayo) _ (ﬁf (SiHO[ COSOL)) — Vf ’

da  rlo r |7

<y
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When one changes to coordinates f(z(u,v), y(u,v)) holds:

of 8fox  ofdy

du dzdu dyou
If 2(¢) and y(¢) depend only on one parameter ¢ holds:

or _osde  ofdy
ot Oxdt Oy dt

The total differential df of a function of 3 variables is given by:

_of of of

So
df of afd_y Bf%

de  Or Oydx 0z da
The tangent in point & at the surface f(z,y) = 0 is given by the equation f(Zo)(x — zo) + fy(Zo)(y — yo) = 0.

The tangent plane in Zy is given by: f..(Zo)(x — xo) + f(Z0)(y — yo) = z — f(Zo).

3.2.2 Taylor series
A function of two variables can be expanded as follows in a Taylor series:

n

1 oP oP
f(xo+h,yo+ k) = pz:;) ] (h@ + ka—yi’> f(zo,y0) + R(n)

with R(n) the residual error and

oP P 47 P\, myp-m 0" f(a;b)
(h% + ka—yp> fla,b) = mz <m)h k R

=0

3.2.3 Extrema

When f is continuous on a compact boundary V' there exists a global maximum and a global minumum for f on
this boundary. A boundary is called compact if it is limited and closed.

Possible extrema of f(x, %) on a boundary V € IR? are:

1. Pointson V' where f(x,y) is not differentiable,

2. Points where V f = 0,

3. If the boundary V is given by ¢(z, y) = 0, than all points where V f(, y) + AV (x, y) = 0 are possible for
extrema. This is the multiplicator method of Lagrange, A is called a multiplicator.

The same as in IR? holds in IR3 when the area to be searched is constrained by a compact V, and V is defined by
v1(x,y,z) = 0and pa(z,y, z) = 0 forextrema of f(z,y, z) for points (1) and (2). Point (3) is rewritten as follows:
possible extrema are points where V f(z,y, 2) + A\ V1 (2, , 2) + AaVia (2, y, 2) = 0.
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3.24 The V-operator

In cartesian coordinates (x, y, z) holds:

ﬁ — g . + g ey + g e
T e dy YT H%
_of. of ., Of .
gradf = o €r + By €y + 92 €,
.. 0Oagy Oay,  Oa,
diva = or + B—y 0z

curlda = aaz—% e + %_% e, + %_&lz g
N dy 0z ) " 0z ox )Y or oy ) ©
*f  o*f  0*f
2 pu— —_— —_— _
vip = Ox? + Oy> + 022

In cylindrical coordinates (r, i, z) holds:

= 0 10, 0

VvV = Eer—i_;%ew—i_&ez
_of. 1o0f.  Of,
gradf = 3T€T+T8Lpe¢+8zez
divg = 20, % 100, da.

or r o r dy 0z

cmlg = (19% 9% (94 Oa:). . (04  ap 104,
e = r Op 92 ) 0z ar ) or rrop c

92f 10f 1 0%f O°f

a2 o TR T aa

Vo=

In spherical coordinates (r, 6, ) holds:

vV o= gé'r-l-lgé'@—f—#ig
or r 00 rsinf dp 7
dva = %i’r+2zr+%%+rtiie+rsiln9%

Oag , as _ 104,
or T r 00 €
0%f 20f 1 0%f 1 of 1 0% f

2, _ o) 207 Loy L o7y
viio= 6r2+r6r+r2892+r2tan989 r2 sin? 6 0?2

General orthonormal curvilinear coordinates (u, v, w) can be derived from cartesian coordinates by the transforma-
tion & = Z(u, v, w). The unit vectors are given by:

s LoF L 1oF . 10F
u_hlau’ v_hgﬁv’ w_hg(?w

where the terms h; give normalization to length 1. The differential operators are than given by:

19f . 1af. 1,

Adf = —2lé,+—2La, +—
gra f hl 6u6 +h2 67}6 +h36w
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A 6 0
div @ h1h2h3 hghgau % hshia,) + 5 (h1h2aw)>
. 1 8(h3aw hQCLU (hlau) 8(h3aw) =
1 - - - v
curta hghg < ) h3h1 < ow ou €t
1 8(}12@@ hlau
h1h2 ou

.. 1 Jo hghg@f hahy Of hahs Of
Vi = i laa \ T o +8v he Ov +3w hs 0w

Some properties of the V-operator are:

div(¢?) = ¢dive' + grade - ¥ curl(¢¥) = ¢eurld + (gradg) x ¢ curl gradg = 0
div(@ x ¥) = ¥ (curld) — @ - (curld)  curl curly = grad dive’ — V27 div curldy =0
div grad¢ = V2¢ V20 = (V2vy, V209, V203)

Here, ¥ is an arbitrary vectorfield and ¢ an arbitrary scalar field.

3.25 Integral theorems

Some important integral theorems are:

Gauss: # (v-7)d*A = / // (divd)d3V
Stokes for a scalar field: jlé(gb - €)ds = //(ﬁ x gradeg)d® A

Stokes for a vector field: j{(ﬁ- é)ds = //(curlﬁ- il)d? A

this gives: #(Curlﬁ- i)d*A =0

Ostrogradsky: # (it x 7)d*A = / / / (curld)d® A
Gomaa— [[[ @aaoay

Here the orientable surface [ d*A is bounded by the Jordan curve s(t).

3.2.6 Multipleintegrals

Let A be a closed curve given by f(z,y) = 0, than the surface A inside the curve in IR? is given by

://dQA://d:cdy

Let the surface A be defined by the function z = f(z,y). The volume V' bounded by A and the xy plane is than
given by:

V:/ f(z,y)dxdy

The volume inside a closed surface defined by z = f(x, y) is given by:

:///d3V:/ f(z,y)dxdy = ///dxdydz
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3.2.7 Coordinatetransfor mations

The expressions d2A and d®V transform as follows when one changes coordinates to @ = (u,v,w) through the
transformation z(u, v, w):

V= ///fxy, dmdydz—///f (W) | == dudvdw
In IR? holds:
0T | xy
oi | Yu Yo

Let the surface A be defined by z = F(z,y) = X (u,v). Than the volume bounded by the 2y plane and F is given

by: //f( e //f (@) ‘8X (96)1)(
s

3.3 Orthogonality of functions

du dv—//fxy, (x,y)) \/1+6 F2 4+ 0, F2dxdy

The inner product of two functions f(z) and g(x) on the interval [a, b] is given by:

b

(.9) = [ F@)gla)do

or, when using a weight function p(z), by:

b

(f.9) = / p(a)f (2)g(x)dz

a

The norm || 7|| follows from: || f[|? = (f, f). A set functions f; is orthonormal if (f;, f;) = &;;.

Each function f(x) can be written as a sum of orthogonal functions:

) = Z cigi(w)
i=0

and > ¢? < || f]|. Let the set g; be orthogonal, than it follows:

fagi

ci =
)

3.4 Fourier series

Each function can be written as a sum of independent base functions. When one chooses the orthogonal basis
(cos(nz), sin(nz)) we have a Fourier series.

A periodical function f(z) with period 2L can be written as:

_ao—i—Z[ancos( )—i—b s1n(n2x)}

Due to the orthogonality follows for the coefficients:

L
iL/f(t)dt’ a”:%/f(t)cos(n?ﬂ) dt bnz%/f(t)sin("%t) dt
—L
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A Fourier series can also be written as a sum of complex exponents:

f(l'): Z Cneinz

with i
1 .
Cn = —/f(z)e I
2m

The Fourier transform of a function f(z) gives the transformed function f(w):

oo

n 1 —iwx
f(w):EZO f(@)e " do

The inverse transformation is given by:

0] = oz [ Fareras

DN | =

where f(zT) and f(x~) are defined by the lower - and upper limit:

fla™) =lim f(z) , f(a™)=lim f(z)

zTa zla

For continuous functions is £ [f(z 1) + f(z7)] = f(=).




Chapter 4

Differential equations

4.1 Linear differential equations
41.1 First order linear DE

The general solution of a linear differential equation is given by ya = yu + yp, Where yy is the solution of the
homogeneous equation and yp is a particular solution.

A first order differential equation is given by: '(x) + a(z)y(xz) = b(z). Its homogeneous equation is y’(x) +
a(x)y(x) = 0.
The solution of the homogeneous equation is given by

S

Substitution of exp(Ax) in the homogeneous equation leads to the characteristic equation A +a = 0
== —a.

Suppose that a(x) = a =constant.

Suppose b(x) = « exp(ux). Than one can distinguish two cases:
1. X\ # p: aparticular solution is: yp = exp(ux)

2. A = u: aparticular solution is: yp = x exp(ux)

When a DE is solved by variation of parameters one writes: yp(x) = yu(z)f(z), and than one solves f(z) from
this.

4.1.2 Second order linear DE

A differential equation of the second order with constant coefficients is given by: v’ (z) + ay’(z) + by(x) = c(x).
If ¢(x) = ¢ =constant there exists a particular solution yp = ¢/b.

Substitution of y = exp(\z) leads to the characteristic equation A2 + a\ + b = 0.

There are now 2 possibilities:
1. A\ # Ao than yg = aexp(Mz) + Bexp(Aaz).
2. A\ = X2 = X thanyg = (o + Bz) exp(Ax).
If ¢(x) = p(x) exp(ux) where p(x) is a polynomial there are 3 possibilities:
1. A1, A2 # pt yp = q(z) exp(px).
2. AL = i, Az # it yp = xq(x) exp(uz).
3. M = X2 = i yp = a?q(x) exp(pz).

where ¢(z) is a polynomial of the same order as p(x).

When: 3 (z) + w?y(z) = wf(x) and y(0) = y'(0) = 0 follows: y(z) =

Ct—sy

f(z)sin(w(x — t))dt.

20
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4.1.3 TheWronskian

We start with the LDE y"(x) + p(x)y’ (z) + ¢(x)y(z) = 0 and the two initial conditions y(xo) = Ko and y'(z¢) =
K7. When p(z) and ¢(x) are continuous on the open interval I there exists a unique solution y(z) on this interval.

The general solution can than be written as y(z) = c1y1(x) + cay2(x) and y; and y- are linear independent. These
are also all solutions of the LDE.

The Wronskian is defined by:

W(y1,y2) = ‘ T2 gl — e

Y1 Y2

y1 and y, are linear independent if and only if on the interval I when 324 € I so that holds:
W (y1(zo),y2(w0)) = 0.

414 Power seriessubstitution

When a series y = > a,a™ is substituted in the LDE with constant coefficients y” (x) + py’(x) 4+ qy(z) = 0 this
leads to:

Z [n(n — 1Danz""? 4 pna,z" ' + qana:"] =0

n

Setting coefficients for equal powers of = equal gives:
(n+2)(n+ Dansz +p(n + Dans1 + qan = 0

This gives a general relation between the coefficients. Special cases are n = 0, 1, 2.

4.2 Some special cases

421 Frobenius method

Given the LDE
Pole) | M) dulz) | @) 0y o

dx? r dx 2

with b(z) and ¢(z) analytical at z = 0. This LDE has at least one solution of the form
yi(z) = 2™ Z apx”™ with i =1,2
n=0
with r real or complex and chosen so that ag # 0. When one expands b(z) and c¢(z) as b(z) = bg + byz + baz? + ...
and c(z) = co + c12 + coz? + ..., it follows for r:
7%+ (bg— 1)r+co=0

There are now 3 possibilities:

1. ry = roithan y(z) = y1(x) In |z| + ya2(z).

2. r1 —rg € IN: than y(z) = ky1(z) In |z| 4+ y2(x).

3. ry —ry # Z: than y(x) = y1(x) + y2(x).
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422 Euler
Given the LDE

2d2 (z )—i—axdy( )

e e +by(x) =0

Substitution of y(x) = z" gives an equation for 7: 72 + (a — 1)r + b = 0. From this one gets two solutions r; and

ro. There are now 2 possibilities:
1. ry # ro: thany(z) = Cra™ + Coz™.
2. rpy =ry =rithan y(x) = (Cy In(x) + Ca)z"

4.2.3 LegendresDE
Given the LDE 2 4
(1—2?) dya:(f) — 2z ‘Zl(;) +n(n—1y(z) =0

The solutions of this equation are given by y(z) = aP,(x) + bya2(x) where the Legendre polynomials

defined by:
Po) = L (L - xz)n)

dx™ 2mn!

For these holds: || P,||? = 2/(2n + 1).

4.2.4 Theassociated L egendre equation

This equation follows from the §-dependent part of the wave equation V2¥ = 0 by substitution of
& = cos(#). Than follows:

2 (5) 2 2 _

-5 (1-5E) +ica-¢) - mipo —o

Regular solutions exists only if C = [(I 4 1). They are of the form:

jpd™POE) (-2 gt
delml 20! delml+1s

P™e) =1 -y

For |m| > Lis Pl‘m|(§) = 0. Some properties of P?(¢) zijn:

1
1
PP(&)PR(&)de = P o ———
/1 PP = 5 Z ! R
This polynomial can be written as:
1
—/5—1—\/52 1cos(
™
0

4.25 Solutionsfor Bessdl’s equation

Given the LDE

Py(z dy(x
z? dyx(z L ?il(:v) +(@® —v)y() =0

also called Bessel’s equation, and the Bessel functions of the first kind

0 (_1)mx2m

Jy =3
(x) X 2:0 22m+l/m!1"(,/ +m+ 1)

m=

P(x) are
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for v :=n € IN this becomes:

Jn(ZC) — " Z (_1)mx "

22m+nml(n 4+ m)!

m=0

When v # Z the solution is given by y(z) = aJ, (x) + bJ_, (). But because for n € Z holds:
J_n(z) = (—=1)"J,(z), this does not apply to integers. The general solution of Bessel’s equation is given by
y(x) = aJ,(z) + bY, (x), where Y, are the Bessel functions of the second kind:

o(@) costm) = T (@) 0y v, () = Tim Y, (a)

Sin(Vﬂ') v—n

Y. (z) =

The equation 22y (x) + xy’(z) — (2? + v?)y(z) = 0 has the modified Bessel functions of the first kind I, (z) =
i~vJ,(iz) as solution, and also solutions K, = w[I_, (x) — I, (x)]/[2 sin(v7)].

Sometimes it can be convenient to write the solutions of Bessel’s equation in terms of the Hankel functions

H{D(2) = Ju(2) +iYa(x) , HP(x) = Ju(z) = iYa(2)

4.2.6 Properties of Bessel functions
Bessel functions are orthogonal with respect to the weight function p(z) = =.

J_n(z) = (=1)"J,(x). The Neumann functions N,,(z) are definied as:

1 1 & o
Np(z) = %Jm(:v) In(z) + — ;ana@
The following holds: 111% I (z) = 2™, 1ir% Np(x) = =™ form # 0, limO No(z) = In(x).
lim H(T)—w limJ(:v)—\/icos(x—m) lim J (x)—wisin(ac—az)
o0 - \/; I 2500 n - T n bl gl —n - T n

with z,, = im(n+ 3).

In1(@) + Jn1(x) = %njn(x) s In1(x) = Jnoa(x) = -2

The following integral relations hold:

2m
Im(z) = % /exp[i(z sin(f) — m#)]dl = %/cos(sc sin(0) — m#)do
0

(=)

4.2.7 Laguerresequation
Given the LDE

T

d
Solutions of this equation are the Laguerre polynomials L, (x):
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4.2.8 Theassociated Laguerre equation
Given the LDE

dx? T dx T

Solutions of this equation are the associated Laguerre polynomials L7 (z):

Pyla) (m-i-l . 1) dy(z) | <n+ %<m+1>> y(@) =0

(_l)mn' —x,,—m a—m —x,.n
(n —m)! dzn—m ( o )

L (z) =

429 Hermite

The differential equations of Hermite are:

d*H,,(x) dH,, (z) d*He,, (z) dHe,,(x)
. 2x Ir +2nH, (z) =0 and w2 T + nHe,(z) =
Solutions of these equations are the Hermite polynomials, given by:
1 ,\ d"(exp(—3a?
H,(z) = (=1)"exp <§x2> M = 2"/?He,, (zv/2)
mn

d" (exp(—2?))
dxm™

He,(z) = (—1)"(exp (2?) =27 "2H,,(z/V2)

4210 Chebyshev

The LDE
d*U, () 3 AU, (x)

— 2 —
(I =27 dx? v dx

+n(n+2)U,(x) =0

has solutions of the form
sin[(n 4 1) arccos(x)]

Unle) ===

The LDE
d*T,(x) dT,(x)

(1—2?) T2 TS + 12T, (x) =0

has solutions 7T, (x) = cos(n arccos(x)).

4211 Weber

The LDE W)/ (z) + (n + & — 222)W,(2) = 0 has solutions: W, (z) = He, () exp(—32?).

4.3 Non-linear differential equations

Some non-linear differential equations and a solution are:

"= a\/y? + b2 y = bsinh(a(z — zo))

v =a
Yy =ay/y? —b? y = beosh(a(z — z9))
Yy = a\/b? —y? y = bceos(a(z — x9))
Y = a(y® +b?) y = btan(a(x — xp))
Y = a(y® —b?) y = beoth(a(z — z¢))
y' = a(b? —y?) y = btanh(a(z — x0))
/ b—y b
yoaw (T) YT Ir Cbhexp(—ax)
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4.4 Sturm-Liouville equations
Sturm-Liouville equations are second order LDE’s of the form:

5 (0%

) + q(@)y(@) = Am(z)y(z)

The boundary conditions are chosen so that the operator

i (o) + e

is Hermitean. The normalization function m(x) must satisfy

L =

b
/ ()i )y () = b

When y; (z) and y2(x) are two linear independent solutions one can write the Wronskian in this form:

C

W(yl’yz)_‘ W v  pla)

(T

where C' is constant. By changing to another dependent variable u(x), given by: w(z) = y(x)+/p(x), the LDE
transforms into the normal form:

d*u(z) 1 (p’(ﬂv))2 1p'(x)  qlx) — dm(z)

2 p(a) p()

If I(x) > 0, than y”/y < 0 and the solution has an oscillatory behaviour, if I(z) < 0, than y”"/y > 0 and the
solution has an exponential behaviour.

T H(@)u(z) =0 with I(z) = o

45 Linear partial differential equations
451 General

The normal derivative is defined by:
0 -
8—Z = (Vu, )
A frequently used solution method for PDE’s is separation of variables: one assumes that the solution can be written

asu(x,t) = X (z)T(¢). When this is substituted two ordinary DE’s for X (x) and T'(¢) are obtained.

45.2 Special cases
The wave equation

The wave equation in 1 dimension is given by

Pu 0%

o2~ a2
When the initial conditions u(z, 0) = ¢(x) and du(z, 0)/0t = ¥(x) apply, the general solution is given by:

x+ct

ol at) 4o - + 5 [ W@

r—ct

u(z,t) =

N =
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The diffusion equation
The diffusion equation is:

- = 2
5 DV-=u

Its solutions can be written in terms of the propagators P(x, «’, t). These have the property that
P(z,2',0) = §(z — 2’). In 1 dimension it reads:

1 —(z — 1:’)2)
P(z,2',t) = ex
@20 = ST p( 4Dt
In 3 dimensions it reads:
1 —(7—7")?
P(z,2' t) = ————7 —
(@2, = SDper eXp( 4Dt

With initial condition u(z,0) = f(z) the solution is:

u(:c,t):/f(:c’)P(:c,:c’,t)dz/

g

The solution of the equation

ou 0%u
5% DW =g(z,t)
is given by

u(z,t) = /dt’/d:c’g(:c’,t/)P(:c,:c’,t—t/)

The equation of Helmholtz

The equation of Helmholtz is obtained by substitution of w(Z, t) = v(Z) exp(iwt) in the wave equation. This gives
for v:

V2u(Z,w) + k*v(Z,w) = 0

This gives as solutions for v:

—

1. In cartesian coordinates: substitution of v = Aexp(ik - &) gives:

() :/---/A(k)e“?fdk

with the integrals over k 2 = k2.

2. In polar coordinates:

o(r, ) = Z(Ame(k:r) + By Ny (kr))ei™?

m=0

3. Inspherical coordinates:

S Y(6,0)
v(r,0,p) = Z Z [AtmJyy 1 (k1) + BimJ_;_1 (k)] NG
=0 m=-1
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45.3 Potential theory and Green’stheorem

Subject of the potential theory are the Poisson equation V2u = — f () where £ is a given function, and the Laplace
equation V2u = 0. The solutions of these can often be interpreted as a potential. The solutions of Laplace’s
equation are called harmonic functions.

When a vector field ¢/ is given by ¢ = gradp holds:

b
[ @05 = oB) - o(@)

In this case there exist functions ¢ and @ so that & = grady + curld.

The field lines of the field #(Z) follow from:
Z(t) = \i(Z)

///[Wz” + (Vu, Vo)ld’V = # U%d%él
g

S

The first theorem of Green is:

The second theorem of Green is:
///[UVQ’U —oV3u]d*V = # <u§—v - v?) d*A
n mn
G S

A harmonic function which is 0 on the boundary of an area is also 0 within that area. A harmonic function with a
normal derivative of 0 on the boundary of an area is constant within that area.

The Dirichlet problem is:

V2u(@)=—f(&), € R, u(@)=g(&) forall ¢ S.
It has a unique solution.
The Neumann problem is:

V2u(Z) = —f(Z), F€R , ag(x) — h(7) forall Z€S.
n

The solution is unique except for a constant. The solution exists if:

—///f(f)d?’v = #h(i)dm
R S

A fundamental solution of the Laplace equation satisfies:
V2u(Z) = —6(%)

This has in 2 dimensions in polar coordinates the following solution:

This has in 3 dimensions in spherical coordinates the following solution:

u(r) = Inr
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—

The equation V?v = —§(Z — £ ) has the solution

S 1
(@)= ——
Ar|7 — €|

After substituting this in Green’s 2nd theorem and applying the sieve property of the ¢ function one can derive

Green’s 3rd theorem:
10u 0 (1
—d3 - d*A
// { on ~ “on ( )]
S

The Green function G(Z, € ) is defined by: V2G = —6(Z — £ ), and on boundary S holds G(Z, ) = 0. Than G can

be written as: )

G(Z,§) = m*‘g(l’@)

Than ¢(Z,€) is a solution of Dirichlet’s problem. The solution of Poisson’s equation V2u = — f (&) when on the
boundary S holds: u(Z) = g(&), is:

u6) = [[f c@orraev - )25 g
R

S
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Linear algebra

5.1 Vector spaces
G is a group for the operation ® if;
1. Va,be G=a®be G:agroupis closed.
2. (a®b)®c=a® (b®c): agroup is associative.
3. Jee Gsothata ® e = e ® a = a: there exists a unit element.
4. Ya € Gda € G so that a ® @ = e: each element has an inverse.

If
5¢ab=0b®a

the group is called Abelian or commutative. Vector spaces form an Abelian group for addition and multiplication:
1-d=a, \pd) = (Ap)d, (A4 p)(@+b) = X + Ab + pd + pb.

W is a linear subspace if Vuy, wo € W holds: \wy + pws € W.

W is an invariant subspace of V' for the operator A if Vi € W holds: AW € W.

5.2 Basis

For an orthogonal basis holds: (¢;, €;) = cd;;. For an orthonormal basis holds: (&;, ;) = d;;.

The set vectors {a,, } is linear independent if:

The set {@,,} is a basis if it is 1. independentand 2. V =< a1, a3, ... >= > \id;.

5.3 Matrix calculus

5.3.1 Basicoperations

For the matrix multiplication of matrices A = a;; and B = by, holds with " the row index and * the column index:
ATk Brake = cike | (AB); = 3" b
k

where " is the number of rows and * the number of columns.

The transpose of A is defined by: a]; = aj;. For this holds (AB)" = BT A" and (A™)~' = (A~")". For the
inverse matrix holds: (A - B)~' = B~1. A~1. The inverse matrix A~! has the property that A - A=! = Il and can
be found by diagonalization: (A;;| ) ~ (I|A;;").

29
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The inverse of a 2 x 2 matrix is:

o
Q, o
"
L
|
Q
W
||~
o>
)
7N
|
Q&
o |
>
~

(

The determinant function D = det(A) is defined by:
det(A) = D(a*l, 6*2, ceey d*n)

For the determinant det(A) of a matrix A holds: det(AB) = det(A) - det(B). Een 2 x 2 matrix has determinant:

a b
det( . d>—ad—cb

The derivative of a matrix is a matrix with the derivatives of the coefficients:

— = d — =B— +A—
a ~ ar @ a T a
The derivative of the determinant is given by:
ddet(A) ddl N N dag N - ddn
- D(==, ..., dn) + D(@1, —, ....,an) + ... + D@1, ..., —2=
dt (Fgg 7o+ @n) D@1, <5 ey @) e+ Dl 0

When the rows of a matrix are considered as vectors the row rank of a matrix is the number of independent vectors
in this set. Similar for the column rank. The row rank equals the column rank for each matrix.

Let Z{: V — V be the complex extension of the real linear operator A : V' — V in a finite dimensional V. Then A
and A have the same caracteristic equation.

When 4;; € IR and ¥; + iv3 is an eigenvector of A at eigenvalue A = Ay + i)z, than holds:
1. A% = \MU1 — AUz and At = Aoty + A1 7.
2. U* =¥ — iUy is an eigenvalue at A\* = \; — i)q.
3. The linear span < ¥, ¥ > is an invariant subspace of A.
If k., are the columns of A, than the transformed space of A is given by:
R(A) =< A&, ..., A, >=< ki, ... kn >

If the columns k,, of a n x m matrix A are independent, than the nullspace A/(A4) = {0 }.

5.3.2 Matrix equations

We start with the equation
A

E=
and b # 0. If det(A) = 0 the only solution is 0. If det(A) #

The equation

o S

there exists exactly one solution # 0.

A-7=0
has exactly one solution # 0 if det(A) = 0, and if det(A) # 0 the solution is 0.

Cramer’s rule for the solution of systems of linear equations is: let the system be written as
A Z=b=dix1+ ...+ dntn =b

then z; is given by:
D(a:la e a:j—la b7 aj+17 ey a:n)
det(A)

Tj =
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5.4 Linear transformations

A transformation A is linear if: A(\Z + BY) = NAZ + BAY.

Some common linear transformations are:

[ Transformation type | Equation |
Projection on the line < @ > P(Z)=(a,z)a/(d,a)
Projection on the plane (@,Z) =0 Q(F)=2— P(¥)
Mirror image in the line < @ > S(Z)=2P(&)-%
Mirror image in the plane (@, ) =0 T(Z)=2Q(%)—¥=%—-2P(%)

For a projection holds: ¥ — Py (Z) L Py (Z) and Py (Z) €
If for a transformation A holds: (AZ,7) = (&, Ay ) = (A%, Ay ), than A is a projection.

Let A : W — W define a linear transformation; we define:
o If Sisasubsetof V: A(S) := {AZ € W|Z¥ € S}
o IfTisasubsetof W: A~ (T):={Z e VIAZ) e T}

Than A(S) is a linear subspace of 1 and the inverse transformation A—(7T') is a linear subspace of V. From this
follows that A(V) is the image space of A, notation: R(A). A= (0) = Ej is a linear subspace of V, the null space
of A, notation: A/(A). Then the following holds:

dim(N(4)) + dim(R(A)) = dim(V)

55 Planeand line
The equation of a line that contains the points @ and bis:
T=a+ANb—a)=a+ I

The equation of a plane is:
T=d+AXb—a)+ u(C—a) =ad+ A\, + ura
When this is a plane in IR?, the normal vector to this plane is given by:

771 XFQ

= |7?1 X 7?2|

A line can also be described by the points for which the line equation ¢: (@, £) + b = 0 holds, and for a plane V:
(@, %) + k = 0. The normal vector to V is than: a/|al.

The distance d between 2 points p'and ¢'is given by d(p, §) = ||[7 — ¢]||-

In IR? holds: The distance of a point 'to the line (@, 7) +b=0is

This can be generalized for IR™ and €™ (theorem from Hesse).
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5.6 Coordinate transformations
The linear transformation A from IK™ — IK™ is given by (IK = IR of C):
g’ — AmXTLf
where a column of A is the image of a base vector in the original.
The matrix A2 transforms a vector given w.r.t. a basis « into a vector w.r.t. a basis 3. It is given by:
A7 = (B(Ad@y), ..., B(Ad,))
where 3(Z) is the representation of the vector Z w.r.t. basis £.
The transformation matrix S# transforms vectors from coordinate system « into coordinate system 3:
i =15 = (B(@), ..., B(@n))
and S5 - S5 =11
The matrix of a transformation A is than given by:

AP = (ABe, .., Ale,)

(03

For the transformation of matrix operators to another coordinate system holds: A%, = S{A3S5, A% = SgAgSQ
and (AB)) = A}BS.

Further is AS = S5 A%, Ag = A%Sg. A vector is transformed via X, = S X 5.

5.7 Eigen values

The eigenvalue equation
A

= \T

8

with eigenvalues \ can be solved with (A — AII) = 0
characteristic equation. The following is true: det(A) =

= det(A — A\II') = 0. The eigenvalues follow from this
H)‘i and TT(A) = Zaii = Z YR

The eigen values \; are independent of the chosen basis. The matrix of A in a basis of eigenvectors, with S the
transformation matrix to this basis, S = (E\,, ..., Ex, ), is given by:

A =S71AS = diag(A1, ..., An)

When 0 is an eigen value of A than Ey(A) = NV (A).

When ) is an eigen value of A holds: A™% = A"Z.

5.8 Transformation types

Isometric transformations

A transformation is isometric when: || AZ|| = ||Z]|. This implies that the eigen values of an isometric transformation
are given by A\ = exp(ip) = |A| = 1. Than also holds: (AZ, Ay) = (&, ¥).

When W is an invariant subspace if the isometric transformation A with dim(A) < oo, thanalso W+ is an invariante
subspace.
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Orthogonal transformations

A transformation A is orthogonal if A is isometric and the inverse A~ exists. For an orthogonal transformation O
holds OTO = II, so: OT = O~L. If A and B are orthogonal, than AB and A~ are also orthogonal.

Let A: V — V be orthogonal with dim(V) < oco. Than A is:
Direct orthogonal if det(A) = +1. A describes a rotation. A rotation in IR? through angle ¢ is given by:

R < cos(p)  —sin(p) )

sin(p)  cos(p)

So the rotation angle ¢ is determined by Tr(A) = 2cos(y) with 0 < ¢ < 7. Let A\; and Ao be the roots of the
characteristic equation, than also holds: R(\1) = R(A2) = cos(y), and Ay = exp(ip), A2 = exp(—ip).

In IR3 holds: A\; = 1, Ao = \j = exp(iy). A rotation over E}, is given by the matrix

1 0 0

0 cos(p) —sin(yp)
0 sin(p) cos(p)

Mirrored orthogonal if det(A) = —1. Vectors from E_; are mirrored by A w.r.t. the invariant subspace E+,. A

mirroring in IR? in < (cos($¢), sin(3¢)) > is given by:

g_ ( cos(p)  sin(p) )

sin(p)  — cos(y)

Mirrored orthogonal transformations in IR? are rotational mirrorings: rotations of axis < @; > through angle  and
mirror plane < @; >. The matrix of such a transformation is given by:

-1 0 0

0 cos(p) —sin(yp)
0 sin(p) cos(y)

For all orthogonal transformations O in IR holds that O(%) x O(%) = O(Z x ).

IR"™ (n < oo) can be decomposed in invariant subspaces with dimension 1 or 2 for each orthogonal transformation.

Unitary transformations

Let V' be a complex space on which an inner product is defined. Than a linear transformation U is unitary if U is
isometric and its inverse transformation A~ exists. A n x n matrix is unitary if UHU = II. It has determinant
| det(U)| = 1. Each isometric transformation in a finite-dimensional complex vector space is unitary.

Theorem: for an x n matrix A the following statements are equivalent:
1. Ais unitary,
2. The columns of A are an orthonormal set,

3. The rows of A are an orthonormal set.

Symmetric transformations

A transformation A on IR™ is symmetric if (AZ, ) = (¥, Ay). A matrix A € IM™*™ is symmetric if A = AT, A
linear operator is only symmetric if its matrix w.r.t. an arbitrary basis is symmetric. All eigenvalues of a symmetric
transformation belong to IR. The different eigenvectors are mutually perpendicular. If A is symmetric, than A7 =
A = A™ on an orthogonal basis.

For each matrix B € IM™*™ holds: BT B is symmetric.
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Hermitian transformations

A transformation H : V' — V with V' = €™ is Hermitian if (HZ,y) = (Z, Hy ). The Hermitian conjugated
transformation A* of A is: [a;;] = [a3;]. An alternative notation is: A* = AT. The inner product of two vectors
#and ¢ can now be written in the form: (Z, ) = 77

If the transformations A and B are Hermitian, than their product AB is Hermitian if:
[A,B] = AB — BA = 0. [A, B] is called the commutator of A and B.

The eigenvalues of a Hermitian transformation belong to IR.

A matrix representation can be coupled with a Hermitian operator L. W.r.t. a basis ¢; it is given by L,,, =
(Em, Léy).

Normal transformations

For each linear transformation A in a complex vector space V' there exists exactly one linear transformation B so
that (A%, ) = (&, By). This B is called the adjungated transformation of A. Notation: B = A*. The following
holds: (CD)* = D*C*. A* = A~ if Alis unitary and A* = A if A is Hermitian.

Definition: the linear transformation A is normal in a complex vector space V' if A*A = AA*. This is only the case
if for its matrix S w.r.t. an orthonormal basis holds: ATA = AAT.

If A is normal holds:
1. Forall vectors £ € V and a normal transformation A holds:

(AT, Af) = (A"AT,§) = (AA'T,§) = (A"T, A™Y)

2. Zis an eigenvector of A if and only if Z is an eigenvector of A*.
3. Eigenvectors of A for different eigenvalues are mutually perpendicular.
4. If E, if an eigenspace from A than the orthogonal complement E5- is an invariant subspace of A.
Let the different roots of the characteristic equation of A be 3; with multiplicities n;. Than the dimension of each

eigenspace V; equals n;. These eigenspaces are mutually perpendicular and each vector Z € V' can be written in
exactly one way as

F=) & with & eV,
4
This can also be written as: ¥; = P,Z where P; is a projection on V;. This leads to the spectral mapping theorem:
let A be a normal transformation in a complex vector space V' with dim(V') = n. Than:

1. There exist projection transformations P;, 1 < i < p, with the properties

e P-P;=0fori #j,
e Pr+..+ P, =1,
o dimP (V) + ... +dimP,(V) =n

and complex numbers o, ..., ap SO that A = a1 Py + ... + ap Pp.
2. If A'is unitary than holds |«;| = 1 Vi.

3. If A is Hermitian than «; € IR Vi.
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Complete systems of commuting Hermitian transformations

Consider m Hermitian linear transformations A; in a n dimensional complex inner product space V. Assume they
mutually commute.

Lemma: if E) is the eigenspace for eigenvalue A from Ay, than E is an invariant subspace of all transformations
A;. This means that if 7 € E, than A;7 € E,.

Theorem. Consider m commuting Hermitian matrices A;. Than there exists a unitary matrix U so that all matrices
U'A,;U are diagonal. The columns of U are the common eigenvectors of all matrices A ;.

If all eigenvalues of a Hermitian linear transformation in a n-dimensional complex vector space differ, than the
normalized eigenvector is known except for a phase factor exp(ic).

Definition; a commuting set Hermitian transformations is called complete if for each set of two common eigenvec-
tors v;, ¥; there exists a transformation Ay, so that @; and ¢; are eigenvectors with different eigenvalues of Aj,.

Usually a commuting set is taken as small as possible. In quantum physics one speaks of commuting observables.
The required number of commuting observables equals the number of quantum numbers required to characterize a
state.

5.9 Homogeneous coordinates

Homogeneous coordinates are used if one wants to combine both rotations and translations in one matrix transfor-
mation. An extra coordinate is introduced to describe the non-linearities. Homogeneous coordinates are derived
from cartesian coordinates as follows:

wx X

* _ wy B Y

y T wz | Z

< cart w w
hom hom

sox = X/w,y =Y/wand z = Z/w. Transformations in homogeneous coordinates are described by the following
matrices:

1. Translation along vector (Xg, Yy, Zo, wo):

wWo 0 0 XO

o 0 wWo 0 YO
T= 0 0 wo Z()
0 0 0 w

2. Rotations of the z, y, z axis, resp. through angles o, 3, ~:

1 0 0 0 cos@ 0 sing O
0 cosa —sina 0 0 1 0 0
Ra(a) = 0 sina cosa O Ry(B) = —sin@ 0 cosfB 0
0 0 0 1 0 0 o0 1
cosy —siny 0 0
o siny cosy 0 O
B0)=1 " 0 10
0 0 0 1

3. A perspective projection on image plane z = ¢ with the center of projection in the origin. This transformation
has no inverse.

o O o
o o= O
o o oo

0
0
1
1/c




36 Mathematics Formulary by ir. J.C.A. Wevers

5.10 Inner product spaces

A complex inner product on a complex vector space is defined as follows:

1. (@b)=(ba),
2. (@, B1by + Bab2) = B1(@,b1) + B2(a@,b2) forall @ by, by € Vand By, B2 € C.
3. (@,@)>0foralld eV, (d,a)=0ifand only if @ = 0.

Due to (1) holds: (@,a) € IR. The inner product space C™ is the complex vector space on which a complex inner
product is defined by:

(@b)=> ajb;
For function spaces holds:

(f.9) = / F*()g(t)dt

a

For each @ the length ||@ || is defined by: ||@ || = \/(@, @ ). The following holds: ||@ || — ||b]| < |l@+b | < ||@||+]|B]|,
and with ¢ the angle between @ and b holds: (@, b) = ||@]| - |6 || cos(¢).

Let {d1,...,d,} be a set of vectors in an inner product space V. Than the Gramian G of this set is given by:
Gi; = (d;,d;). The set of vectors is independent if and only if det(G) = 0.

A set is orthonormal if (@;, @;) = d;;. If €1, €, ... form an orthonormal row in an infinite dimensional vector space
Bessel’s inequality holds:

1211 > > 1@, 7))
i=1
The equal sign holds if and only if lim ||Z, — Z| = 0.

The inner product space ¢2 is defined in C'> by:

2 = {d’: (a1, az,...) | Z lan|? < oo}
n=1

A space is called a Hilbert space if it is ¢2 and if also holds: lim |a, 41 — a,| = 0.

5.11 TheLaplacetransformation

The class LT exists of functions for which holds:

1. Oneach interval [0, A], A > 0 there are no more than a finite number of discontinuities and each discontinuity
has an upper - and lower limit,

2. Jtp € [0,00 >and a, M € IR so that for t > ¢ holds: | f(¢)| exp(—at) < M.

Than there exists a Laplace transform for f.

The Laplace transformation is a generalisation of the Fourier transformation. The Laplace transform of a function
f(t)is,withs € C and ¢t > 0:

Fls) = / F(t)e—tdt
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The Laplace transform of the derivative of a function is given by:

£ (7)) = =fe00) = sfD(0) = 5" F(0) + 5 F(s)
The operator £ has the following properties:

1. Equal shapes: if a > 0 than

2. Damping: £ (e” % f(t)) = F(s + a)

3. Translation: If a > 0 and g is defined by g(t) = f(t —a) ift > a and g(¢) = 0 for ¢t < a, than holds:
L(g(t)) = e L(f(1))-

If s € IR than holds R(Af) = L(R(f)) and S(Af) = L(S(f)).

For some often occurring functions holds:

| f= [ F@)=L{U®) =]

tn
- eat (S _ a)fnfl
s—a
e® COS(Wt) m
. w
eat Sln(wt) m
it —a) exp(—as)

5.12 The convolution

The convolution integral is defined by:

0

The convolution has the following properties:
1. fxgelT
2. L(f=g) =L(f)- L(g)
3. Distribution: f«(g+h) = f*xg+ f*h
4. Commutative: fxg =g f
5. Homogenity: f « (Ag) = A\f x g
If L(f) = Fy - Fy, thanis f(t) = f1 * fa.

5.13 Systemsof linear differential equations

We start with the equation 7 = A#. Assume that Z = #exp(At), than follows: A7 = A7. Inthe 2 x 2 case holds:
1. A = Aot than Z(t) = > 0 exp(Ait).
2. A1 # Ao than Z(t) = (dt + U) exp(\t).




38 Mathematics Formulary by ir. J.C.A. Wevers

Assume that A = « + i is an eigenvalue with eigenvector ¢, than A* is also an eigenvalue for eigenvector v'*.
Decompose ¥ = u + 4w, than the real solutions are

c1[ti cos(Bt) — wsin(Bt)]e™ + cz[vcos(Bt) + i sin(Bt)]e™

There are two solution strategies for the equation 7 = A7
1. Let ¥ = Texp(\t) = det(A — A\20) = 0.

2. Introduce: & = w and ¢ = v, this leads to & = @ and § = ©. This transforms a n-dimensional set of second
order equations into a 2n-dimensional set of first order equations.

5.14 Quadratic forms
5.14.1 Quadraticformsin IR?

The general equation of a quadratic form is: 7 Az + 227 P + S = 0. Here, A is a symmetric matrix. If A =
S—1AS = diag(A1, ..., \n) holds: @7 A+ 2a7 P+ S = 0, so all cross terms are 0. @ = (u, v, w) should be chosen
so that det(S) = +1, to maintain the same orientation as the system (z, y, z).

Starting with the equation
ar® +2bzy + ey’ +dr+ey+ f =0
we have |A| = ac — b2, Anellipse has |A| > 0, a parabola |A| = 0 and a hyperbole |A| < 0. In polar coordinates

this can be written as:
ep
r=
1 —ecos(6)

An ellipse has e < 1, a parabola e = 1 and a hyperbolae > 1.

5.14.2 Quadratic surfacesin IR?

Rank 3: ) ) )
T Y z
p; +qb—2 +T§ =d

Ellipsoid: p = ¢ =r = d = 1, a, b, c are the lengths of the semi axes.

Single-bladed hyperboloid: p = ¢ =d=1,r = —1.

Double-bladed hyperboloid: r =d =1,p = ¢ = —1.
e Cone:p=q=1,r=-1,d=0.

Rank 2:
SCQ 2 z
pﬁ + qb—2 + Tc—2 =d
e Elliptic paraboloid: p=g¢=1,7r=—-1,d = 0.
e Hyperbolic paraboloid: p=r=—-1,¢=1,d = 0.
e Ellipticcylinder:p=¢=—-1,r=d=0.
e Hyperboliccylinder: p=d=1,¢=—1,r =0.
e Pairofplanes: p=1,¢g=—1,d =0.
Rank 1:
py’ +aqz=d

e Parabolic cylinder: p,q > 0.
o Parallel pair of planes: d > 0, ¢ =0, p # 0.
e Double plane: p #0,q¢ =d = 0.
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Complex function theory

6.1 Functions of complex variables

Complex function theory deals with complex functions of a complex variable. Some definitions:
f isanalytical on G if f is continuous and differentiable on G.
A Jordan curve is a curve that is closed and singular.

If Kiis a curve in € with parameter equation z = ¢(t) = x(t) + iy(t), a < t < b, than the length L of K is given

' - -

The derivative of f in point z = a is:

dz
dt

b
dt = / 16/(1)|dt

If f(2) = u(z,y) + iv(z,y) the derivative is:
_Ou  Ov Ou  Ov

! - = g -
f'(z) = 8x+2817 23y+3y

Setting both results equal yields the equations of Cauchy-Riemann:

Ju Ov ou ov

dx 9y ' 9y Oz

These equations imply that V2u = V2v = 0. f is analytical if u and v satisfy these equations.

6.2 Complex integration
6.2.1 Cauchy’sintegral formula

Let K be a curve described by z = ¢(t) ona < t < band f(z) is continuous on K. Than the integral of f over K
is:

b
/ f(z)dz = / F(6()(t)de TN ppy  p(a)
K

a

Lemma: let K be the circle with center a and radius r taken in a positive direction. Than holds for integer m:
1 7{ dz [ 0ifm#1
2mi J (z—a)m | 1ifm=1
K
Theorem: if L is the length of curve K and if | f(z)| < M for z € K, than, if the integral exists, holds:

/f(z)dz

K

<ML
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Theorem: let f be continuous on an area G and let p be a fixed point of G. Let F(z) = fpz f&déforall z € G
only depend on z and not on the integration path. Than F'(z) is analytical on G with F’(z) = f(z).

This leads to two equivalent formulations of the main theorem of complex integration: let the function f be analytical
onanarea GG. Let K and K’ be two curves with the same starting - and end points, which can be transformed into
each other by continous deformation within G. Let B be a Jordan curve. Than holds

[ 1= [ 11 § sz~ 0
K K B

By applying the main theorem on e?# /» one can derive that

6.2.2 Residue

A pointa € € is a regular point of a function f(z) if f is analytical in a. Otherwise a is a singular point or pole of
f(2). The residue of f in a is defined by

Res f(z) = %%f(z)dz
K

z=a 21

where K is a Jordan curve which encloses a in positive direction. The residue is 0 in regular points, in singular
points it can be both 0 and # 0. Cauchy’s residue proposition is: let f be analytical within and on a Jordan curve K
except in a finite number of singular points a; within K. Than, if K is taken in a positive direction, holds:

1 n
— @ f(z)dz = E Res f(z)
21 IZ{ = =

Lemma: let the function f be analytical in a, than holds:

Res 1(z)

z=a z — @

= f(a)
This leads to Cauchy’s integral theorem: if F' is analytical on the Jordan curve K, which is taken in a positive

direction, holds:
1 f() iz { f(a) if a inside K

211 zZ—a
K

~ Y 0 if a outside K

Theorem: let K be a curve (K need not be closed) and let ¢ (&) be continuous on K. Than the function

- [ 20
K

3

is analytical with n-th derivative

f(n)(z) = ”!/ (g(b_(i);jfﬂ

K
Theorem: let K be a curve and GG an area. Let ¢(¢, z) be defined for £ € K, z € G, with the following properties:
1. ¢(&, 2) is limited, this means |¢(&, 2)| < M for € K, z € G,

2. Forfixed £ € K, ¢(&, 2) is an analytical function of z on G,
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3. For fixed z € G the functions ¢(&, z) and d¢(&, z)/ 0z are continuous functions of £ on K.

Than the function

f(z) = / o€, 2)de
K

is analytical with derivative
99(¢, 2)
/ —
£ = [ 22
K

Cauchy’s inequality: let f(z) be an analytical function within and on the circle C : |z —a| = Randlet |f(2)| < M

for z € C. Than holds Ml
)| < 2

6.3 Analytical functions defi nied by series

The series Y f,,(z) is called pointwise convergent on an area G with sum F'(z) if

N
v5>0vz€GEINoGRvn>no f(Z) - Z fn(z) <e

The series is called uniform convergent if

N
Ves0INoe RVn>ne3zea | | f(2) — Z fn(2)| <e

Uniform convergence implies pointwise convergence, the opposite is not necessary.

o0
Theorem: let the power series > a,,z™ have a radius of convergence R. R is the distance to the first non-essential
n=0

singularity.
o If lim {/|a,| = Lexists,than R = 1/L.
o If lim |an41]/]an| = L exists, than R = 1/L.

If these limits both don’t exist one can find R with the formula of Cauchy-Hadamard:
1
B= lim sup V/|ay|

6.4 Laurent series

Taylor’s theorem: let f be analytical in an area G and let point a € G has distance r to the boundary of G. Than
f(2) can be expanded into the Taylor series near a:

f(z)= i en(z —a)® with ¢, = f(t;(a)
n=0

valid for |z — a| < r. The radius of convergence of the Taylor series is > r. If f has a pole of order & in a than
Cly.eeey Clh—1 = 0, Ck 75 0.

Theorem of Laurent: let f be analytical in the circulararea G : » < |z — a|] < R. Than f(z) can be expanded into
a Laurent series with center a:

oo

flz) = Z cn(z —a)" with ¢, =

n=—oo

1 f(w)dw

— ¢ ——— , neZ
2mi | (w— a)nt!
K
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valid for » < |z — a| < R and K an arbitrary Jordan curve in G which encloses point « in positive direction.

o0
The principal part of a Laurent seriesis: > ¢_,(z —a)~™. One can classify singular points with this. There are 3
n=1

cases:

1. There is no principal part. Than a is a non-essential singularity. Define f(a) = ¢ and the series is also valid
for |z — a| < Rand f is analytical in a.

2. The principal part contains a finite number of terms. Than there exists a k£ € IN so that
lim (z — a)* f(2) = c_x # 0. Than the function g(z) = (z — a)* f(2) has a non-essential singularity in a.
One speaks of a pole of order & in z = a.

3. The principal part contains an infinite number of terms. Then, « is an essential singular point of f, such as
exp(1/z) for z = 0.

If f and g are analytical, f(a) # 0, g(a) =0, ¢’(a) # 0 than f(z)/g(z) has a simple pole (i.e. a pole of order 1) in

F i) fa)
K96 " 7@

6.5 Jordan’stheorem

Residues are often used when solving definite integrals. We define the notations C;* = {z||z| = p, 3(z) > 0} and
C, = {zllz| = p,S(2) < 0} and M*(p, f) = max |[f(2)], M~ (p, f) = max |f(z)|. We assume that f(z) is
z€C, zeC,

analytical for $(z) > 0 with a possible exception of a finite number of singular points which do not lie on the real
axis, lim pM™(p, f) = 0 and that the integral exists, than
p—00

/ f(z)dx = QWiZResf(z) in §(z2)>0

Replace M T by M~ in the conditions above and it follows that:

/ f(z)dx = —27TiZResf(z) in $(z) <0

Jordan’s lemma: let f be continuous for |z| > R, S(z) > 0and lim M™(p, f) = 0. Than holds for o > 0

pP— 00

lim [ f(2)e"**dz =0

pP— 00

c

Let f be continuous for |z| > R, &(z) < 0and lim M~ (p, f) = 0. Than holds for o < 0

p—00

lim [ f(z)e'**dz =0
p—00

Cp

Let z = a be a simple pole of f(z) and let C; be the half circle |z — a| = §,0 < arg(z — a) < , taken from a + ¢

toa — 4. Than s
1
5¢0 2mmi /f 234 s1(2)
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Tensor calculus

7.1 Vectorsand covectors

A finite dimensional vector space is denoted by V, W. The vector space of linear transformations from V to W is
denoted by £(V,W). Consider L(V,IR) := V*. We name V* the dual space of V. Now we can define vectors in V

with basis and covectors in V* with basis ¢. Properties of both are:

1. Vectors: £ = x*&; with basis vectors &;:

Transformation from system i to 7’ is given by:

. -/ -/ .
Ci/ZA;/Ci:aiEV s ' ZAz.CCl

a1
&

2, N .
2. Covectors: ¥ = x;¢ with basis vectors

Here the Einstein convention is used:

a'b; = Z a'b;
7
The coordinate transformation is given by:

8Ii i (9:6Z

A, = 9T g 9T
L
From this follows that A% - AF = 6F and A%, = (4%)~1,

i =

In differential notation the coordinate transformations are given by:

ox¥ oz"  Ox¥ Ozt
The general transformation rule for a tensor 7' is:
" dun  Outr dam Pz
TQI---Qn — P1..-Pn
$1-8m T 9| Qgpr OxPr  Ous Ousm =~ ToTm

For an absolute tensor ¢ = 0.

43
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7.2 Tensor algebra
The following holds:
aii (i + yi) = asjx; + aijyi, DUt ai(x; + ;) # aijzi + aiy;
and
(aij + aji)zizy = 20225, but (a;; + aj;)ziy; Z 2059,
en (a;; — aji)zx; = 0.

The sum and difference of two tensors is a tensor of the same rank: A7 + BP. The outer tensor product results in

a tensor with a rank equal to the sum of the ranks of both tensors: AL" - B* = CF™. The contraction equals two

indices and sums over them. Suppose we take r = s for a tensor A7P", this results in: > A7"P" = B;"P. The inner
T

product of two tensors is defined by taking the outer product followed by a contraction.

7.3 Inner product

Definition: the bilinear transformation B : V x V* — IR, B(Z, ) = #(Z ) is denoted by < #, i/ >. For this pairing
operator < -,- >= ¢ holds:

J(@) =< T,y >=yia' , <&, >=4!

Let G : V — V* be a linear bijection. Define the bilinear forms

g:VxV—1IR 9(Z,7) =< Z,Gy >
h:V*x V" — IR WE,ij) =< GT'E,i >
Both are not degenerated. The following holds: h(GZ#, Gy ) =< &, Gy >= g(Z, ¥ ). If we identify V and V* with

G, than g (or h) gives an inner product on V.
The inner product (, )5 on A*(V) is defined by:

1
(@, 9)a = (2, W)z
The inner product of two vectors is than given by:
(&,7) = 2"y’ < &,Gé; >= gia'a)

The matrix g;; of G is given by
The matrix g% of G~1 is given by:

For this metric tensor g;; holds: g;;g’* = §%. This tensor can raise or lower indices:
XTj = gij:vi 5 .I'i = gij:vj

i o
anddu® =¢ = g“¢;.
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7.4 Tensor product

Definition: let ¢/ and V' be two finite dimensional vector spaces with dimensions m and n. Let &/* x V* be the
cartesian product of 2/ and V. A functiont : U* x V* — IR; (4;U) — t(u;v) = t*Puug € IR is called a tensor
if ¢ is linear in i and @. The tensors ¢ form a vector space denoted by &/ ® V. The elements T € V ® V are called
contravariant 2-tensors: T = T4 ¢, ® G = T99; ® 0;. The elements T' € V* ® V* are called covariant 2-tensors:

T = Tyé ®¢& = Tyda' @ da?. The elements T € V* @ V are called mixed 2 tensors: T = T;7¢" © & =
T;’ds" ® 9;, and analogous for 7' € V @ V*.

The numbers given by

o8 — (&% &%)

with1 < o <mand1 < g < n are the components of ¢.

Take 7 € U and ¢ € V. Than the function ¥ ® ¥, definied by

(7@ §)(d,0) =< &4 >u< §,7 >v

is a tensor. The components are derived from: (@ ® ¥);; = u;v’. The tensor product of 2 tensors is given by:
2 S o (2 S i k ik
o) form: (@@ &)(P.q) = v'piwar =T piak
0 . PR ik ik
) form: (P® §) (U, W) = piv'grw® = Typv'w

1 R i i
(1> form: (7 @ p)(q, W) = v'gippw® = Tjqiw"

7.5 Symmetric and antisymmetric tensors

Atensort € V ® V is called symmetric resp. antisymmetric if VZ, i € V* holds: #(Z, g?) = t(g?,:?) resp. t(%,{j) =
A tensor t € V*® V* is called symmetric resp. antisymmetric if V&, € V holds: ¢(Z,7) = (
t(Z,y) = —t(y,Z). The linear transformations S and A in V ® W are defined by:

—

, @) resp.

St(E,g) = 3§ +iF.T))
At(iﬁ) = %(t(%, Z?) - t({ﬁ%))

Analogous in V* @ V*. If ¢ is symmetric resp. antisymmetric, than St = ¢ resp. At = t.

Thetensors €; V €; = €;€; = 25(€; ® €;), with 1 < ¢ < j < nare abasis in S(V ® V) with dimension %n(n +1).
The tensors &; A €; = 2A(¢; ® €;), with 1 <4 < j < nareabasis in A(V ® V) with dimension $n(n — 1).

The complete antisymmetric tensor ¢ is given by: €;x€xim = 0i10jm — Sim0ji-

The permutation-operators e, are defined by: e123 = e231 = e312 = 1, e213 = €132 = ez21 = —1, for all other
combinations e, = 0. There is a connection with the & tensor: ¢,,, = g~'/2¢,,, and eP?" = g1/2erar,

7.6 Outer product
Leta € A¥(V)and 8 € AY(V). Than a A B € AFFL(V) is defined by:

(k+1)!
Il

Ifaand € A*(V) =V*holds: aAfB=a®[-3®«

alAfB= Ala @ B)
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-,

The outer product can be written as: (@ x b); = eixa?b*, @ x b= G~ - +(Ga A Gb).

Take @, b, ¢, d € IR*. Than (dt A dz)(@,
of the parallelogram spanned by @ and b.
Further

x b
5) = apby — bpay is the oriented surface of the projection on the ¢z-plane

N ap bo Co
(dt VAN dy A dZ)(d', b, 5) = det as b2 Co
a4 b4 Cy

is the oriented 3-dimensional volume of the projection on the ¢y z-plane of the parallelepiped spanned by &, band ¢

(dt A dx A dy A dz)(@, b, ¢, d) = det(@, b, &, d) is the 4-dimensional volume of the hyperparellelepiped spanned by
a, b, ¢and d.

7.7 TheHodge star operator

A*(V) and A"~*(V) have the same dimension because (}) = (,,",) for 1 < k& < n. Dim(A™(V)) = 1. The choice
of a basis means the choice of an oriented measure of volume, a volume g, in V. We can gauge x so that for an

. . .. . . . . A1l A2 ~
orthonormal basis €; holds: w(e;) = 1. This basis is than by definition positive oriented if u = & A€ ANE T =1.

Because both spaces have the same dimension one can ask if there exists a bijection between them. If V has no extra
structure this is not the case. However, such an operation does exist if there is an inner product defined on V and the
corresponding volume . This is called the Hodge star operator and denoted by . The following holds:

Vwear(V) Fewerr—n ) Voearyy 0 A *xw = (0, w)rp

For an orthonormal basis in IR holds: the volume: u = dx A dy A dz, *dz A dy A dz = 1, xdx = dy A dz,
xdz = dx N dy, *dy = —dx A dz, *(dx A dy) = dz, *(dy A dz) = dz, *(dx A\ dz) = —dy.

For a Minkowski basis in IR* holds: i = dt Ade Ady ANdz, G =dt @ dt — dx ® de — dy ® dy — dz ® dz, and
«xdt ANdx ANdy ANdz =1and x1 = dt A dx A dy A dz. Further xdt = dx A dy A dz and xdx = dt A dy A dz.

7.8 Differential operations

7.8.1 Thedirectional derivative
The directional derivative in point @ is given by:

of

Laf =< d,df >=a' ==
oz’

7.8.2 Thelie-derivative

The Lie-derivative is given by: . o } .
(L) = w'0pv! — v* O’

7.8.3 Christoffel symbols

To each curvelinear coordinate system u’ we add a system of n3 functions F;'.k of u, defined by

o*%  _, OF
Auiouk IR gyt

These are Christoffel symbols of the second kind. Christoffel symbols are no tensors. The Christoffel symbols of the

second kind are given by:
i i 0%z i
{jk} =L = <mdﬂf >
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with F;'.k = Fij- Their transformation to a different coordinate system is given by:

Fj‘l/k/ = Az/A;/Ak’FZk + Az/ (aj, A;C,)

J
The first term in this expression is 0 if the primed coordinates are cartesian.

There is a relation between Christoffel symbols and the metric:
= 39" (59kr + Okgri — Orgjn)
and I'g,, = 95(In(,/Ig)).

Lowering an index gives the Christoffel symbols of the first kind: P;k = g"'T k.

7.84 Thecovariant derivative

The covariant derivative V ; of a vector, covector and of rank-2 tensors is given by:

Via" = 0;a' + F;kak
Vjai = ajai — Ffjak
Vyag = 0ya3 — Fiﬁa? +19.a3
Vyaag = Oy0ag — I‘iaaag —1I7% gaae
V,a*? = 0,0 + Fggasﬁ + Fggao‘s
Ricci’s theorem:
ViGap = vvgaﬁ =0
7.9 Differential operators
The Gradient
is given by:
cof 0
_ =1 _ ki Y T
The divergence
is given by:
1
div(a') = V;a' = —0, a®
(a') 7 k(vga")
The curl
is given by:

rot(a) = G- %-d-Gd = —P"V,a, = V,a, — Vpa,

The Laplacian
is given by:

0

AT) = div uad(f) = s+ df = Vg0, = g7VV, 5 = <= (Vi 5 )
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7.10 Differential geometry

7.10.1 Spacecurves

We limit ourselves to IR? with a fixed orthonormal basis. A point is represented by the vector ¥ = (z!, 22, 23). A
space curve is a collection of points represented by = #(¢). The arc length of a space curve is given by:

o= V) (@) (@)

The derivative of s with respect to ¢ is the length of the vector dz'/dt:

ds\*> (dz dz
dt) — \dt’ dt
The osculation plane in a point P of a space curve is the limiting position of the plane through the tangent of the

plane in point P and a point Q when @ approaches P along the space curve. The osculation plane is parallel with
Z(s). If & # 0 the osculation plane is given by:

G=T+\e+pi s0 det(§—,7,2) =0
In a bending point holds, if 5# 0:
F=F+ N +pi

The tangent has unit vector # = &, the main normal unit vector 77 = 7 and the binormal b = # x #. So the main
normal lies in the osculation plane, the binormal is perpendicular to it.

Let P be a point and ) be a nearby point of a space curve Z(s). Let Ay be the angle between the tangents in P
and @ and let At be the angle between the osculation planes (binormals) in P and . Then the curvature p and the

torsion 7 in P are defined by:
dgo 2 . Acp 2 dlb 2
2 _ (99 _ /¥ 2 _ (Y
p _(ds) ﬁi@o(&) 7 ds

and p > 0. For plane curves p is the ordinary curvature and 7 = 0. The following holds:
P = (00) = (F7) and 72 = (5,0)
Frenet’s equations express the derivatives as linear combinations of these vectors:
Z:pﬁ , ﬁ:—pz—&-ﬂ; , z:—Tﬁ
From this follows that det(Z, #, & ) = p*7.

Some curves and their properties are:

Screw line T/p =constant

Circle screw line T =constant, p =constant
Plane curves 7=0

Circles p =constant, 7 = 0

Lines p=17=0

7.10.2 Surfacesin IR?

A surface in IR? is the collection of end points of the vectors & = #(u,v), s0 2" = z(u®). On the surface are 2
families of curves, one with u =constant and one with v =constant.

The tangent plane in a point P at the surface has basis:

61 = 811? and 62 = 8255
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7.10.3 Thefirst fundamental tensor

Let P be a point of the surface £ = #(u®). The following two curves through P, denoted by u®* = wu®(t),
u® = v*(7), have as tangent vectors in P

dz  du® | dfidvﬁaa
dt o dt 0t ar T Tar Pt

The first fundamental tensor of the surface in P is the inner product of these tangent vectors:
dZ d¥ L du® dvP
(E’ E) = (G )
The covariant components w.r.t. the basis ¢, = 0, are:
gap = (Ca, Cp)
For the angle ¢ between the parameter curves in P: u = t,v =constant and u =constant, v = 7 holds:

g12

OS9) = Jorom

For the arc length s of P along the curve w*(¢) holds:
ds? = gapdu®du®

This expression is called the line element.

7.10.4 The second fundamental tensor
The 4 derivatives of the tangent vectors 0,03 = 0,Cp are each linear independent of the vectors ¢i, ¢ and N,
with N perpendicular to ¢; and é. This is written as:

0aCs =T 58, + hapN

This leads to:

[l = (€7.0a8) » hap = (N, 0afls) = det (1, &, OaCs)

1
V/det |g|
7.10.5 Geodetic curvature

A curve on the surface Z(u®) is given by: u® = u®(s), than & = Z(u*(s)) with s the arc length of the curve. The
length of Z is the curvature p of the curve in P. The projection of Z on the surface is a vector with components

p? =i + 700"

of which the length is called the geodetic curvature of the curve in p. This remains the same if the surface is curved
and the line element remains the same. The projection of Z on N has length

p = hagu®u’

and is called the normal curvature of the curve in P. The theorem of Meusnier states that different curves on the
surface with the same tangent vector in P have the same normal curvature.

A geodetic line of a surface is a curve on the surface for which in each point the main normal of the curve is the
same as the normal on the surface. So for a geodetic line is in each point p7 = 0, so
d?u 5 du® du”
+ —_—
ds? B ds ds
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The covariant derivative V/dt in P of a vector field of a surface along a curve is the projection on the tangent plane
in P of the normal derivative in P.

For two vector fields /() and w(¢) along the same curve of the surface follows Leibniz’ rule:

d@,@) _ (- V&), (5 VO
a \Ua Y

Along a curve holds:

7.11 Riemannian geometry
The Riemann tensor R is defined by:

RH

bT" = VaVsTh — VsV Th

Thisisa (;) tensor with n?(n? — 1) /12 independent components not identically equal to 0. This tensor is a measure
for the curvature of the considered space. If it is O, the space is a flat manifold. It has the following symmetry
properties:

Raﬁuu = Ruua,@ = _Rﬁauu = _Raﬁuu

The following relation holds:
Va, V|TH = RgaBT,f + Ry, 5Ty

The Riemann tensor depends on the Christoffel symbols through
R3, = 0,15, — 0,15, + 15,5, —T5,T5,
In a space and coordinate system where the Christoffel symbols are 0 this becomes:
R3,., = 397 (9504900 — 0500 9oy + 05 09pu — s 0ugpn)
The Bianchi identities are: VaRagu + Vo Ragau + ViuRagur = 0.

The Ricci tensor is obtained by contracting the Riemann tensor: R,z = RZM,, and is symmetric in its indices:

Rap = Rga. The Einstein tensor G is defined by: G* = R*? — 145 It has the property that VsG*? = 0. The
Ricci-scalar is R = g’ R, 5.
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81 Errors

There will be an error in the solution if a problem has a number of parameters which are not exactly known. The
dependency between errors in input data and errors in the solution can be expressed in the condition number ¢. If
the problem is given by « = ¢(a) the first-order approximation for an error da in a is:

dx  ad'(a) da

v ¢la) a

The number c(a) = |a¢’(a)|/|¢(a)|. ¢ < 1if the problem is well-conditioned.

8.2 Floating point representations

The floating point representation depends on 4 natural numbers:
1. The basis of the number system S,
2. The length of the mantissa ¢,
3. The length of the exponent ¢,

4. Thesign s.

Than the representation of machine numbers becomes: ‘ rd(z) =s-m- 3¢ ‘Where mantissa m is a number with ¢

(-based numbers and for which holds 1/5 < |m| < 1, and e is a number with ¢ 5-based numbers for which holds
le] < 32 — 1. The number 0 is added to this set, for example with m = e = 0. The largest machine number is

Amax = (1 - /Bit)BQQ71
and the smallest positive machine number is
Gmin = ﬂiﬁq
The distance between two successive machine numbers in the interval [37~1, 7] is 8P~t. If z is a real number and
the closest machine number is rd(z), than holds:
rd(z) =2(14+¢) with |g] < 38"
z=r1d(z)(1+&) with [ < it

The number n := %ﬁl‘t is called the machine-accuracy, and

x —rd(zx)

g, <n
X

=7

An often used 32 bits float format is: 1 bit for s, 8 for the exponent and 23 for de mantissa. The base here is 2.
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8.3 Systemsof equations

We want to solve the matrix equation AZ = bfora non-singular A, which is equivalent to finding the inverse matrix
A~1L. Inverting a n x n matrix via Cramer’s rule requires too much multiplications f(n) withn! < f(n) < (e—1)n!,
so other methods are preferable.

8.3.1 Triangular matrices

Consider the equation Uz = ¢'where U is a right-upper triangular, this is a matrix in which U,;; = 0 for all j < 4,
and all U;; # 0. Than:

Tpn = Cn/Uﬁn

(Cnfl_'UﬁanIn)/Uﬁanfl

Tn—1

z = (e =) Uiyay)/Un

Jj=2
In code:

for (k = n; k > 0; k--)
{
S = c[kl;
for ( = k + 1; j < n; j++)
{
S -= ULk1O1 * x0il:

}
x[k] = S 7/ ULK]LK];
}

This algorithm requires %n(n + 1) floating point calculations.

8.3.2 Gaussdimination

Consider a general set A¥ = b. This can be reduced by Gauss elimination to a triangular form by multiplying the
first equation with A;; /A;1 and than subtract it from all others; now the first column contains all 0’s except A1;.
Than the 2nd equation is subtracted in such a way from the others that all elements on the second row are 0 except
Ags, etc. In code:

for (k = 1; k <= n; k++)

{
for g = k; § <= n; j++) ULKIO] = ALKI;
c[k] = b[k];

for (i = k + 1; i <= n; i++)
{
L = A[i][K] 7 VIK]1IK];
for G = k + 1; j <= n; j++)

) ALI0O] -= L > ULKIL]:
b[i] -= L * c[k]:
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This algorithm requires %n(nQ — 1) floating point multiplications and divisions for operations on the coefficient
matrix and %n(n — 1) multiplications for operations on the right-hand terms, whereafter the triangular set has to be
solved with 2n(n + 1) operations.

8.3.3 Pivot strategy

Some equations have to be interchanged if the corner elements A1, ASQ), ... are not all # 0 to allow Gauss elimina-

tion to work. In the following, A(™ is the element after the nth iteration. One method is: if Ag;_l) = 0, than search

for an element A;’,i_l) with p > k that is # 0 and interchange the pth and the nth equation. This strategy fails only
if the set is singular and has no solution at all.

8.4 Rootsof functions

8.4.1 Successive substitution
We want to solve the equation F'(x) = 0, so we want to find the root « with F'(«) = 0.

Many solutions are essentially the following:

1. Rewrite the equation in the form = = f(z) so that a solution of this equation is also a solution of F'(z) = 0.
Further, f(x) may not vary too much with respect to x near «.

2. Assume an initial estimation x for « and obtain the series x,, with z,, = f(z,—1), inthe hope that lim =z, =

n— 00
.

Example: choose

h(z) F(z)
r)=0p—e—==x—
T =0~y =" Gw
than we can expect that the row z,, with
ro = f3
Ty = Tpo1— sh(xn_l)
9(xn—1)

converges to .

8.4.2 Local convergence

Let « be a solution of 2 = f(x) and let z,, = f(x,,—1) for a given z. Let f’(x) be continuous in a neighbourhood
of a. Let f'(a) = A with |A| < 1. Than there exists a § > 0 so that for each zo with |zg — | < § holds:

1. lim n, = a,
n—oo

2. If for a particular & holds: x) = «, than for each n > k holds that z,, = a. If ,, # « for all n than holds

— — Ty — A
1imﬂ=/1 , limuzfl , lim @
=00 & — Tp—1 =00 Tp—1 — Tp-2 =00 Tp — Tpn—1 1-A
The quantity A is called the asymptotic convergence factor, the quantity B = —'%log |A| is called the asymptotic

convergence speed.
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8.4.3 Aitken extrapolation

We define
A= lim —2n " %n-l
nN—0 Tpn—1 — Tn-2
A convergesto f/(a). Than the row
Oy = Ty + 1 —Zln (In - Infl)

will converge to «.

8.4.4 Newton iteration

There are more ways to transform F'(z) = 0 into x = f(z). One essential condition for them all is that in a
neighbourhood of a root « holds that | f'(z)| < 1, and the smaller f’(x), the faster the series converges. A general
method to construct f(z) is:

f(x) =z — ®(2)F(x)

with ®(x) # 0 in a neighbourhood of .. If one chooses:

- 1
TP

O(x)

Than this becomes Newtons method. The iteration formula than becomes:

_ F(Infl)
F/(CEn_l)

Ty = Tp—1
Some remarks:
e This same result can also be derived with Taylor series.
e Local convergence is often difficult to determine.
e If 2, is far apart from « the convergence can sometimes be very slow.
e The assumption F’(a) # 0 means that « is a simple root.

For F(x) = 2* — a the series becomes:

This is a well-known way to compute roots.

The following code finds the root of a function by means of Newton’s method. The root lies within the interval
[x1, x2]. The value is adapted until the accuracy is better than +eps. The function funcd is a routine that
returns both the function and its first derivative in point X in the passed pointers.

float SolveNewton(void (*funcd)(float, float*, float*), float x1, float x2, float eps)
{

int j, max_iter = 25;
float df, dx, f, root;

* (X1 + x2);
; J <= max_iter; j++)

-
o
o
=1
1
o
= O

(*funcd) (root, &f, &df);
dx = f/df;
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root = -dx;
if ( (X1 - root)*(root - x2) < 0.0 )
{
perror("Jumped out of brackets in SolveNewton.');
exit(l);
if ( fabs(dx) < eps ) return root; /* Convergence */
}
perror("'Maximum number of iterations exceeded in SolveNewton.');
exit(1);
return 0.0;

}

845 The secant method

This is, in contrast to the two methods discussed previously, a two-step method. If two approximations z,, and x,, 1
exist for a root, than one can find the next approximation with

Tp — Tp—1

F(xn) - F(xn—l)

Tnt1 = Tp — F(xy)

If F(x,) and F(x,—1) have a different sign one is interpolating, otherwise extrapolating.

8.5 Polynomial interpolation

A base for polynomials of order n is given by Lagrange’s interpolation polynomials:

The following holds:
1. Each L;(z) has order n,
2. Lj(x;) =0;5fori,j=0,1,...,m,
3. Each polynomial p(x) can be written uniquely as

n

p(z) = chLj(:I:) with ¢; = p(x;)

Jj=0

This is not a suitable method to calculate the value of a ploynomial in a given point x = a. To do this, the Horner
algorithm is more usable: the value s = >, ¢z in = a can be calculated as follows:

float GetPolyVvalue(float c[], int n)
{

int i; float s = c[n];

for (i =n - 1; i > 0; i--)

{

s =s *a+ c[i];
}
return s;

}

After it is finished s has value p(a).
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8.6 Definiteintegrals

Almost all numerical methods are based on a formula of the type:

b n
[ e =S eittan + RO
Y i=0
with n, ¢; and 2; independent of f(z) and R(f) the error which has the form R(f) = Cf(9)(¢) for all common

methods. Here, £ € (a,b) and ¢ > n + 1. Often the points x; are chosen equidistant. Some common formulas are:

e Thetrapezoidrule:n=1,290 =a,21 =b,h =b — a:

Jroma=t

e Simpson’srule: n =2, xg = a, x1 = %(a—i—b), To=b h= %(b —a):

MID*

h3
f(xo) + f(x1)] = Ef”(f)

[ oo = Miste0)+ 450 + Sl - 100
3l 9
e The midpointrule: n =0, 20 = 1 (a +b), h =b—a:
/ F@)dz = hf (o) + (6

The interval will usually be split up and the integration formulas be applied to the partial intervals if f varies much
within the interval.

A Gaussian integration formula is obtained when one wants to get both the coefficients c¢; and the points «; in an
integral formula so that the integral formula gives exact results for polynomials of an order as high as possible. Two
examples are:

1. Gaussian formula with 2 points:

Jrom=a[r(Z)+s(5)] + e

2. Gaussian formula with 3 points:

h

[ r@aas = 3 o7 (<ny/2) + 8500 +57 (1/3)] + 500

—h

8.7 Derivatives

There are several formulas for the numerical calculation of f/(z):

e Forward differentiation:

i) = LEX @y e
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e Backward differentiation: ) — f( n)
xXr) — Xr —
J'(@) = === £ 3RO
e Central differentiation: i - ) )
iy fl@+h)—flx—h h
e The approximation is better if more function values are used:

—J\Z T — €T — xr — 4
Fla) = f(z+2h)+8f(x+h)—8f(x—h)+ f( 2h)+h_

12h 30
There are also formulas for higher derivatives:

gy = —I @+ 20) 167+ h) = 307(2) 4167 (x —h) = [l —2h) B
Fi) = 1212 90

(8

8.8 Differential equations

We start with the first order DE y'(x) = f(x,y) for x > z¢ and initial condition y(z¢) = zo. Suppose we find
approximations z1, za, ..., 2z, for y(z1), y(x2),..., y(z,). Than we can derive some formulas to obtain z,; as
approximation for y(x,,1):

e Euler (single step, explicit):
2

—y"(€)

Zn+1 = Zn + hf(.%'n, Zn) + 9

e Midpoint rule (two steps, explicit):
3

Byme)

Zn+1 = Zn—1 + th(l'n, Zn) + 3

e Trapezoid rule (single step, implicit):

h3
Zn+l = Zn T %h(f(xn, zn) + f(@nt1, 2nt1)) — —y’”({“)

12
Runge-Kutta methods are an important class of single-step methods. They work so well because the solution y(z)
can be written as:
Ynt1 = Yn + hf(§n,y(€n)) With &, € (20, Tni1)
Because &,, is unknown some “measurements” are done on the increment function £ = hf(x,y) in well chosen
points near the solution. Than one takes for z,, 11 — z, a weighted average of the measured values. One of the
possible 3rd order Runge-Kutta methods is given by:

kv = hf(zn,zn)
ks = hf(zn+ 3h, 2o+ 1k1)
ks = hf(zn+ 3h,zn + 3ko)
Zn41 = Zn+ 5(2k1 + 3ka + 4ks)
and the classical 4th order method is:
ki = hf(zn,zn)
ky = hf(z,+ 1h Zn+ 5 kl)
ks = hf(zn+ 5 h Zn + ékg)
ks = hf(e,+ h, Zn + k3)
Zng1 = Zn+ 2(ki + 2ke + 2k3 + ka)

Often the accuracy is increased by adjusting the stepsize for each step with the estimated error. Step doubling is
most often used for 4th order Runge-Kutta.
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8.9 Thefast Fourier transform

The Fourier transform of a function can be approximated when some discrete points are known. Suppose we have
N successive samples hy, = h(t;) with ¢, = kA, k = 0,1,2,..., N — 1. Than the discrete Fourier transform is

given by:
N—

H, = hke%rikn/N
k=0

—

and the inverse Fourier transform by
N-1

1 .
hy = N Z Hn€727mkn/N

n=0
This operation is order N2. It can be faster, order N -2 log(V), with the fast Fourier transform. The basic idea is

that a Fourier transform of length IV can be rewritten as the sum of two discrete Fourier transforms, each of length
N/2. One is formed from the even-numbered points of the original NV, the other from the odd-numbered points.

This can be implemented as follows. The array data[ 1. -2*nn] contains on the odd positions the real and on the
even positions the imaginary parts of the input data: data[ 1] is the real part and data[2] the imaginary part of
fo, etc. The next routine replaces the values in data by their discrete Fourier transformed values if isign = 1,
and by their inverse transformed values if isign = —1. nn must be a power of 2.

#include <math.h>
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

void FourierTransform(float data[], unsigned long nn, int isign)

{
unsigned long n, mmax, m, j, istep, i;
double wtemp, wr, wpr, wpi, wi, theta;
float tempr, tempi;
n=nn<<1;
J=1;
for (i = 1; 1 <n; i += 2)
{
if(j>1i)
{
SWAP(data[j], data[i]);
SWAP(data[j+1], data[i+1]);
}
m=n > 1;
while (m>=2 && j > m)
{
J-=m
m >>= 1;
}
3 +=m;
}

while ( n > mmax ) /* Outermost loop, is executed log2(nn) times */

istep = mmax << 1;

theta = isign * (6.28318530717959/mmax) ;
wtemp = sin(0.5 * theta);

wpr = -2.0 * wtemp * wtemp;

sin(theta);
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wr =1.0;
wi = 0.0;
for (m = 1; m < mmax; m += 2)
{
for (i = m; § <= n; i += istep) /* Danielson-Lanczos equation */
{ - -
J = 1 + mmax;
tempr = wr * data[j] - wi * data[j+1];
tempi = wr * data[j+1] + wi * data[j];
data[j] = data[i] - tempr;
data[j+1] = data[i+l1l] - tempi;
data[i] += tempr;
data[i+1] += tempi;
}
wr = (wtemp = wr) * wpr - wi * wpi + wr;
wi = wi * wpr + wtemp * wpi + wi;
} -
mmax=istep;
}

}




