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1 Single-valued functions

All of the following functions can be defined via power series which converge
for the entire complex plane, and hence they are called entire functions, being
analytic everywhere:

ez =
∞∑

n=0

zn

n!
= 1 +

z2

2!
+

z3

3!
+ · · · , (1)

cosh z = 1
2 (ez + e−z), (2)

sinh z = 1
2 (ez − e−z), (3)

cos z = 1
2 (eiz + e−iz), (4)

sin z = 1
2i (e

iz − e−iz). (5)

Along the real axis these all reduce to the usual real series.
The following converge and are thus analytic for |z| < 1:

log(1 + z) =
∞∑

n=1

(−1)n−1

n
zn

= z − 1
2z2 + 1

3z3 − 1
4z4 + · · · ,

(6)

and

(1 + z)α =
∞∑

n=0

(
α

n

)
zn

= 1 + αz +
α(α− 1)

1 · 2
z2 +

α(α− 1)(α− 2)
1 · 2 · 3

z3 + · · ·

(7)

All of these above are single-valued, for each z, there is one f(z).
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2 Multivalued functions

A multivalued function or multifunction f(z) has two or more distinct values
for each value of z. Important multivalued functions are

√
z, n
√

z,
√

(z − a)(z − b), log z,

zα, sin−1 z, and cos−1 z.

To use multivalued functions, one must pick out a branch in some region R
where the functions is single-valued and continuous. This is done with cuts and
Riemann sheets. Probably the simplest case is

w =
√

z. (8)

If we write
z = |z|eiθ = reiθ, (9)

the square root has two branches:

w1 = r1/2ei θ
2 , (10)

w2 = −r1/2ei θ
2 = r1/2ei θ+2π

2 . (11)

If you can stay on one branch, w =
√

z is analytic except at z = 0.
Now think about what happens if we go around the point z = 0 in the

complex plane. Start at some point z = reiθ with the branch w1, and go along
any closed curve that goes once around the point z = 0. Then r → r, θ → θ+2π.
As z moves, w1 changes continuously, and when z returns to the original point,
w1 has changed to w2. If we go around again, w2 → w1. Notice that

1. The variation of w is continuous through both branches, returning contin-
uously to the first after two loops, and

2. the point z = 0 is special.

Any other path not including z = 0 has ordinary single-valued behavior: r →
r, θ → θ, so w1 → w1 or w2 → w2.

The point z = 0 is a type of singularity called a branch point and is very
different from a pole. The function

√
z is unavoidably double valued in any

region that includes z = 0 as an interior point. If z goes on a circuit around
z = 0, w changes to −w. If the branch point is inside the region there is no way
to separate w1 from w2. However, if we stay in a region that does not include
the branch point, then as z moves around w1 does not change into w2.

How do we avoid this? One way is simply to promise to never go all the way
around the branch point. More formally this means to restrict z to a region
R which excludes the branch point z = 0. Imagine an arbitrary region R that
does not include z = 0 (see figure 1). Expand this region in such a way as to
leave out z = 0, this leaves a “cut” in the plane around the branch point and
extending off to infinity. This cut runs along some curve from z = 0 to infinity
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Figure 1: Enlarging the domain of a function to make a cut for a branch point
at z = 0. The dotted line is the eventual branch cut.

Figure 2: The standard branch cut for w =
√

z. The red dashed line is the cut.

in some arbitrary direction. This is a “branch cut.” The shape and direction
of the curve are not fixed, they are chosen for convenience in the problem at
hand.1

Suppose we choose the negative real axis for the cut. Then we define
√

z to
be √

z = r1/2ei θ
2 , −π ≤ θ < π. (12)

If we consider a point just above the cut on the negative real side, it has the value
r1/2ei π

2 = ir1/2. On the bottom of the cut it has the value r1/2e−i π
2 = −ir1/2,

so there is a discontinuity across the cut. See figure 2. So we define the function
as never crossing it. If the cut is not crossed, it remains analytic.

The cut could be taken somewhere else, such as along the positive real axis,
1There are fairly standard conventions for branch cuts in programming languages which use

complex numbers, such as FORTRAN, Mathematica, Python, the C and C++ math libraries,
etc.
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Figure 3: The Riemann sheet for
√

z. From Wikipedia.

and/or one could use the other branch as the standard. If one uses a different
branch or cut, a different value will be obtained in some parts of the plane. This
is often a source of trouble in translating algorithms that use complex functions
from one computer language to another.

Other functions are similar but more complicated.
√

z − a has its branch
point at z = a, but is otherwise identical to

√
z. n
√

z, n = 3, 4, 5, . . . has a branch
point at z = 0 and is n valued:

n
√

z = n
√

rei θ+2πk
n , k = 0, 1, 2, . . . , n− 1. (13)

This can be made single-valued with a cut such as the one used with
√

z, and
one of the branches:

n
√

z = n
√

rei θ
n , −π ≤ θ < π. (14)

3 Stitching the plane back together: Riemann
sheets

Riemann devised a way to keep both branches of
√

z while maintaining a con-
tinuous single-valued function. Imagine separating the z plane into two sheets
connected along the cut. The independent variable z has the same value at two
points, one on the “top” sheet, and one on the “bottom.” On the top sheet√

z has the values associated with one branch, on the bottom sheet, it has the
values associated with the other branch. See figure 3 If the cut is along the
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negative real axis, then as θ goes throug π, z goes down through the cut on
the bottom sheet, then back up as it goes through 3π. In a complete traversal
of both sheets around the branch point θ increases by 4π,θ/2 by 2π, and

√
z

comes back to its starting value. The cut is arbitrary, and you can disregard
the intersection of the sheets along the cut. The branch point gives the surface
this topology.

If a function has more values, it has more sheets: n
√

z has n sheets connected
at the cut. If the function has two branch points like

√
(z − a)(z − b), a common

choice is to take the cut along the line between z = a and z = b, and gives two
sheets connected along this cut. With multiple branch points, Riemann sheets
or surfaces end up with all sorts of strange and wonderful topological properties.

4 An infinitely multivalued function: the loga-
rithm

The function log z is the inverse of the exponential. So if

z = ew, (15)

then
w = log z. (16)

By considering the power series for ew

dz

dw
= ew = z (17)

so
dw

dz
=

d

dz
log z =

1
z
. (18)

Since it has a derivative, the logarithm is analytic (again in one branch, or on
a Riemann sheet).

The logarithm has an infinite number of branches. We can write from z = ew

z = reiθ = reiθ+i2πn = eln r+iθ+i2πn (19)

where n = 0,±1,±2, . . . , any integer. So the logarithm is

log z = ln r + iθ + i2πn. (20)

Every time z moves in a closed curve around the branch point z = 0, θ increases
by 2π and we go from one branch to another, and this can go on forever. θ goes
through multiples of 2π, and the infinite set of values of the logarithm differ by
2πni. The branch point z = 0 is of infinite order for log z.

We can get a single valued function by picking a cut, such as the negative
real axis:

log z = ln r + iθ, −π ≤ θ < π. (21)
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At two points z1, z2 on either side of the cut

log z1 = ln r − iπ, (22)
log z2 = ln r + iπ. (23)

The discontinuity across the cut is 2πi.
To make this continuous via Riemann surface, it has an infinite number of

sheets attached at z = 0, spiraling like a helix or screw, if you visualize it in a
third dimension.

Similarly, zα has an infinite order branch point if α is an irrational number.
If α = p/q is a rational number (p, q integers) then it has q branches or sheets.
The formula

zα = eα(ln r+iθ) (24)

helps to show this.

5 References
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